148 research outputs found

    Development Environment for Optimized Locomotion System of Planetary Rovers

    Get PDF
    This paper addresses the first steps that have been undergone to set up the development environement w.r.t optimization and to modelling and simulation of overall dynamics of the rover driving behaviour under all critical surface terrains, like soft and hard soils, slippage, bulldozing effect and digging in soft soil. Optimization is based on MOPS (Multi-Objective Prameter Synthesis), that is capable for handling several objective functions such as mass reduction, motor power reduction, increase of traction forces, rover stability guarantee, and more. The tool interferes with Matlab/Simulink and with Modelica/Dymola for dynamics model implementation. For modelling and simulation of the overall rover dynamics and terramechanical behaviour in all kind of soils we apply a Matlab based tool that takes advantage of the multibody dynamics tool Simpack. First results of very promising rover optimizations 6 wheels are presented that improve ExoMars rover type wheel suspension systems. Performance of driveability behaviour in different soils is presented as well. The next steps are discusses in order to achieve the planned overall development environment

    Mechanical Design and Analysis of All‐terrain Mobile Robot

    Get PDF
    This paper presents the conceptual mechanical analysis of the all-terrain mobile robot (AMoBo). The locomotion concept for all-terrain mobile robot is based on six independent motorized wheels. The mobile robot has a steering wheel in the front and the rear, and two wheels arranged on a bogie on each side. The front wheel has a spring suspension to guarantee optimal ground contact of all wheels at any time. The steering of the vehicle is realized by synchronizing the steering of the front and rear wheels and the speed difference of the bogie wheels. A prototype AMoBo was designed and fabricated. The developed prototype is about 66 cm in length and 23 cm in height. Testing size results show that the prototype able to overcome obstacles of same height as its wheel diameter and can climb stairs with step height of over 10 cm. Finite element analysis was used to analyse and verify the strength of each critical part of AMoBo. The base plate appeared to be the critical part with the highest shear stress and the lowest safety factor

    Mechanical Design and Analysis of All‐terrain Mobile Robot

    Get PDF
    This paper presents the conceptual mechanical analysis of the all-terrain mobile robot (AMoBo). The locomotion concept for all-terrain mobile robot is based on six independent motorized wheels. The mobile robot has a steering wheel in the front and the rear, and two wheels arranged on a bogie on each side. The front wheel has a spring suspension to guarantee optimal ground contact of all wheels at any time. The steering of the vehicle is realized by synchronizing the steering of the front and rear wheels and the speed difference of the bogie wheels. A prototype AMoBo was designed and fabricated. The developed prototype is about 66 cm in length and 23 cm in height. Testing size results show that the prototype able to overcome obstacles of same height as its wheel diameter and can climb stairs with step height of over 10 cm. Finite element analysis was used to analyse and verify the strength of each critical part of AMoBo. The base plate appeared to be the critical part with the highest shear stress and the lowest safety factor

    3D Position Tracking in Challenging Terrain

    Get PDF
    The intent of this paper is to show how the accuracy of 3D position tracking can be improved by considering rover locomotion in rough terrain as a holistic problem. An appropriate locomotion concept endowed with a controller min- imizing slip improves the climbing performance, the accuracy of odometry and the signal/noise ratio of the onboard sensors. Sensor fusion involving an inertial mea- surement unit, 3D-Odometry, and visual motion estimation is presented. The exper- imental results show clearly how each sensor contributes to increase the accuracy of the 3D pose estimation in rough terrain

    Luontoa jÀljittelevÀn pallorobotin kehittÀminen planeettatutkimukseen

    Get PDF
    Planeetoille suuntautuvat tutkimusmatkat tĂ€htÀÀvĂ€t usein maaperĂ€nĂ€ytteiden kerÀÀmiseen ja tutkimiseen, usein myös nĂ€ytteiden palauttamiseen Maahan tarkempia tutkimuksia varten. ÄskettĂ€iset Marsiin suuntautuneet robottimissiot ovat osoittaneet liikkuvien robottien kyvyn suorittaa tutkimustehtĂ€viĂ€. Vieraalla planeetalla robotin liikkumiskyky on tarpeen tutkittavan alueen laajentamiseksi ja tutkimusten kohdentamiseksi haluttuihin tieteellisesti kiinnostavimpiin kohteisiin. Luonnon kehittĂ€miĂ€ ratkaisuja jĂ€ljittelevĂ€ liikkumistapa saattaa tarjota liikkuvalle robotille nykyisiĂ€ parempaa mukautumis- ja viansietokykyĂ€. TĂ€mĂ€ tutkimustyö etsii luonnosta uusia innovaatioita ja tĂ€htÀÀ uudenlaisten joustavien ja tehokkaiden liikkumistapojen kehittĂ€miseen liikkuville roboteille. Erityisesti työ keskittyy pallomaisen, aro-ohdakkeen mukaan englanniksi 'Thistle':ksi nimetyn, robotin mÀÀrittelyyn ja alustavaan kehitystyöhön. Tutkimus kĂ€sittelee myös keinoja hyödyntÀÀ liikkumisessa Marsin paikallisia energialĂ€hteitĂ€, kuten tuuli- ja lĂ€mpöenergiaa. Useita erilaisia energiankeruutapoja esitellÀÀn ja arvioidaan. Vaikka kaikki tutkitut konseptit eivĂ€t heti vaikuta toteuttamiskelpoisilta, on ne kuitenkin esitelty mitÀÀn pois jĂ€ttĂ€mĂ€ttĂ€, jotta ne voisivat olla innoittajina tuleville uusille asiaan liittyville tutkimuksille.Planetary exploration missions often aim to carry out in-situ analysis and possibly return samples to Earth for more thorough examination. Recent robotic missions to Mars have demonstrated effectiveness of robotic exploration of planetary surface. Purpose of a mobile robot on planet surface is to enlarge the area to be investigated, and to concentrate investigations on subjects with most scientific interest. The application of biomimetic locomotion to the Martian surface offers the possibility of increased robustness and failure tolerance of a mobile robot. This study searches for new innovations from nature and aims to develop a novel system to provide robust and efficient locomotion system to be used for exploring surface of foreign planets. Especially this work describes definition and conceptual development of a rolling robot -later called 'The Thistle' mimicking a Russian Thistle -plant. The study considers locomotion and power generation methods that would utilize local power generation resources like wind or heat. This study involves the identification and conceptual development of innovative concepts for planetary surface locomotion and energy collection. Several concepts are presented and evaluated. Considering nature of the study, although evaluation reveals some concepts probably not adequate, these are not removed from the thesis, but are left here for the interest and further inspiration of the reader

    3D position tracking for all-terrain robots

    Get PDF
    Rough terrain robotics is a fast evolving field of research and a lot of effort is deployed towards enabling a greater level of autonomy for outdoor vehicles. Such robots find their application in scientific exploration of hostile environments like deserts, volcanoes, in the Antarctic or on other planets. They are also of high interest for search and rescue operations after natural or artificial disasters. The challenges to bring autonomy to all terrain rovers are wide. In particular, it requires the development of systems capable of reliably navigate with only partial information of the environment, with limited perception and locomotion capabilities. Amongst all the required functionalities, locomotion and position tracking are among the most critical. Indeed, the robot is not able to fulfill its task if an inappropriate locomotion concept and control is used, and global path planning fails if the rover loses track of its position. This thesis addresses both aspects, a) efficient locomotion and b) position tracking in rough terrain. The Autonomous System Lab developed an off-road rover (Shrimp) showing excellent climbing capabilities and surpassing most of the existing similar designs. Such an exceptional climbing performance enables an extension in the range of possible areas a robot could explore. In order to further improve the climbing capabilities and the locomotion efficiency, a control method minimizing wheel slip has been developed in this thesis. Unlike other control strategies, the proposed method does not require the use of soil models. Independence from these models is very significant because the ability to operate on different types of soils is the main requirement for exploration missions. Moreover, our approach can be adapted to any kind of wheeled rover and the processing power needed remains relatively low, which makes online computation feasible. In rough terrain, the problem of tracking the robot's position is tedious because of the excessive variation of the ground. Further, the field of view can vary significantly between two data acquisition cycles. In this thesis, a method for probabilistically combining different types of sensors to produce a robust motion estimation for an all-terrain rover is presented. The proposed sensor fusion scheme is flexible in that it can easily accommodate any number of sensors, of any kind. In order to test the algorithm, we have chosen to use the following sensory inputs for the experiments: 3D-Odometry, inertial measurement unit (accelerometers, gyros) and visual odometry. The 3D-Odometry has been specially developed in the framework of this research. Because it accounts for ground slope discontinuities and the rover kinematics, this technique results in a reasonably precise 3D motion estimate in rough terrain. The experiments provided excellent results and proved that the use of complementary sensors increases the robustness and accuracy of the pose estimate. In particular, this work distinguishes itself from other similar research projects in the following ways: the sensor fusion is performed with more than two sensor types and sensor fusion is applied a) in rough terrain and b) to track the real 3D pose of the rover. Another result of this work is the design of a high-performance platform for conducting further research. In particular, the rover is equipped with two computers, a stereovision module, an omnidirectional vision system, an inertial measurement unit, numerous sensors and actuators and electronics for power management. Further, a set of powerful tools has been developed to speed up the process of debugging algorithms and analyzing data stored during the experiments. Finally, the modularity and portability of the system enables easy adaptation of new actuators and sensors. All these characteristics speed up the research in this field

    Development, Control, and Empirical Evaluation of the Six-Legged Robot SpaceClimber Designed for Extraterrestrial Crater Exploration

    Get PDF
    In the recent past, mobile robots played an important role in the field of extraterrestrial surface exploration. Unfortunately, the currently available space exploration rovers do not provide the necessary mobility to reach scientifically interesting places in rough and steep terrain like boulder fields and craters. Multi-legged robots have proven to be a good solution to provide high mobility in unstructured environments. However, space missions place high demands on the system design, control, and performance which are hard to fulfill with such kinematically complex systems. This thesis focuses on the development, control, and evaluation of a six-legged robot for the purpose of lunar crater exploration considering the requirements arising from the envisaged mission scenario. The performance of the developed system is evaluated and optimized based on empirical data acquired in significant and reproducible experiments performed in a laboratory environment in order to show thecapability of the system to perform such a task and to provide a basis for the comparability with other mobile robotic solutions

    Axel Rover Tethered Dynamics and Motion Planning on Extreme Planetary Terrain

    Get PDF
    Some of the most appealing science targets for future exploration missions in our solar system lie in terrains that are inaccessible to state-of-the-art robotic rovers such as NASA's Opportunity, thereby precluding in situ analysis of these rich opportunities. Examples of potential high-yield science areas on Mars include young gullies on sloped terrains, exposed layers of bedrock in the Victoria Crater, sources of methane gas near Martian volcanic ranges, and stepped delta formations in heavily cratered regions. In addition, a recently discovered cryovolcano on Titan and frozen water near the south pole of our own Moon could provide a wealth of knowledge to any robotic explorer capable of accessing these regions. To address the challenge of extreme terrain exploration, this dissertation presents the Axel rover, a two-wheeled tethered robot capable of rappelling down steep slopes and traversing rocky terrain. Axel is part of a family of reconfigurable rovers, which, when docked, form a four-wheeled vehicle nicknamed DuAxel. DuAxel provides untethered mobility to regions of extreme terrain and serves as an anchor support for a single Axel when it undocks and rappels into low-ground. Axel's performance on extreme terrain is primarily governed by three key system components: wheel design, tether control, and intelligent planning around obstacles. Investigations in wheel design and optimizing for extreme terrain resulted in the development of grouser wheels. Experiments demonstrated that these grouser wheels were very effective at surmounting obstacles, climbing rocks up to 90% of the wheel diameter. Terramechanics models supported by experiments showed that these wheels would not sink excessively or become trapped in deformable terrain. Predicting tether forces in different configurations is also essential to the rover's mobility. Providing power, communication, and mobility forces, the tether is Axel's lifeline while it rappels steep slopes, and a cut, abraded, or ruptured tether would result in an untimely end to the rover's mission. Understanding tether forces are therefore paramount, and this thesis both models and measures tension forces to predict and avoid high-stress scenarios. Finally, incorporating autonomy into Axel is a unique challenge due to the complications that arise during tether management. Without intelligent planning, rappelling systems can easily become entangled around obstacles and suffer catastrophic failures. This motivates the development of a novel tethered planning algorithm, presented in this thesis, which is unique for rappelling systems. Recent field experiments in natural extreme terrains on Earth demonstrate the Axel rover's potential as a candidate for future space operations. Both DuAxel and its rappelling counterpart are rigorously tested on a 20 meter escarpment and in the Arizona desert. Through analysis and experiments, this thesis provides the framework for a new generation of robotic explorers capable of accessing extreme planetary regions and potentially providing clues for life beyond Earth.</p

    NASA Innovative Advanced Concepts (NIAC) Phase 1 Final Report: Venus Landsailer Zephyr

    Get PDF
    Imagine sailing across the hot plains of Venus! A design for a craft to do just this was completed by the COncurrent Multidisciplinary Preliminary Assessment of Space Systems (COMPASS) Team for the NASA Innovative Advanced Concepts (NIAC) project. The robotic craft could explore over 30 km of surface of Venus, driven by the power of the wind
    • 

    corecore