3,741 research outputs found

    Identifying Design Requirements for Wireless Routing Link Metrics

    Full text link
    In this paper, we identify and analyze the requirements to design a new routing link metric for wireless multihop networks. Considering these requirements, when a link metric is proposed, then both the design and implementation of the link metric with a routing protocol become easy. Secondly, the underlying network issues can easily be tackled. Thirdly, an appreciable performance of the network is guaranteed. Along with the existing implementation of three link metrics Expected Transmission Count (ETX), Minimum Delay (MD), and Minimum Loss (ML), we implement inverse ETX; invETX with Optimized Link State Routing (OLSR) using NS-2.34. The simulation results show that how the computational burden of a metric degrades the performance of the respective protocol and how a metric has to trade-off between different performance parameters

    Predicting Performance of Channel Assignments in Wireless Mesh Networks through Statistical Interference Estimation

    Get PDF
    Wireless Mesh Network (WMN) deployments are poised to reduce the reliance on wired infrastructure especially with the advent of the multi-radio multi-channel (MRMC) WMN architecture. But the benefits that MRMC WMNs offer viz., augmented network capacity, uninterrupted connectivity and reduced latency, are depreciated by the detrimental effect of prevalent interference. Interference mitigation is thus a prime objective in WMN deployments. It is often accomplished through prudent channel allocation (CA) schemes which minimize the adverse impact of interference and enhance the network performance. However, a multitude of CA schemes have been proposed in research literature and absence of a CA performance prediction metric, which could aid in the selection of an efficient CA scheme for a given WMN, is often felt. In this work, we offer a fresh characterization of the interference endemic in wireless networks. We then propose a reliable CA performance prediction metric, which employs a statistical interference estimation approach. We carry out a rigorous quantitative assessment of the proposed metric by validating its CA performance predictions with experimental results, recorded from extensive simulations run on an ns-3 802.11g environment

    Joint QoS multicast routing and channel assignment in multiradio multichannel wireless mesh networks using intelligent computational methods

    Get PDF
    Copyright @ 2010 Elsevier B.V. All rights reserved.In this paper, the quality of service multicast routing and channel assignment (QoS-MRCA) problem is investigated. It is proved to be a NP-hard problem. Previous work separates the multicast tree construction from the channel assignment. Therefore they bear severe drawback, that is, channel assignment cannot work well with the determined multicast tree. In this paper, we integrate them together and solve it by intelligent computational methods. First, we develop a unified framework which consists of the problem formulation, the solution representation, the fitness function, and the channel assignment algorithm. Then, we propose three separate algorithms based on three representative intelligent computational methods (i.e., genetic algorithm, simulated annealing, and tabu search). These three algorithms aim to search minimum-interference multicast trees which also satisfy the end-to-end delay constraint and optimize the usage of the scarce radio network resource in wireless mesh networks. To achieve this goal, the optimization techniques based on state of the art genetic algorithm and the techniques to control the annealing process and the tabu search procedure are well developed separately. Simulation results show that the proposed three intelligent computational methods based multicast algorithms all achieve better performance in terms of both the total channel conflict and the tree cost than those comparative references.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs
    corecore