101 research outputs found

    A Taxonomy on Misbehaving Nodes in Delay Tolerant Networks

    Get PDF
    Delay Tolerant Networks (DTNs) are type of Intermittently Connected Networks (ICNs) featured by long delay, intermittent connectivity, asymmetric data rates and high error rates. DTNs have been primarily developed for InterPlanetary Networks (IPNs), however, have shown promising potential in challenged networks i.e. DakNet, ZebraNet, KioskNet and WiderNet. Due to unique nature of intermittent connectivity and long delay, DTNs face challenges in routing, key management, privacy, fragmentation and misbehaving nodes. Here, misbehaving nodes i.e. malicious and selfish nodes launch various attacks including flood, packet drop and fake packets attack, inevitably overuse scarce resources (e.g., buffer and bandwidth) in DTNs. The focus of this survey is on a review of misbehaving node attacks, and detection algorithms. We firstly classify various of attacks depending on the type of misbehaving nodes. Then, detection algorithms for these misbehaving nodes are categorized depending on preventive and detective based features. The panoramic view on misbehaving nodes and detection algorithms are further analyzed, evaluated mathematically through a number of performance metrics. Future directions guiding this topic are also presented

    Modélisation formelle des systèmes de détection d'intrusions

    Get PDF
    L’écosystème de la cybersécurité évolue en permanence en termes du nombre, de la diversité, et de la complexité des attaques. De ce fait, les outils de détection deviennent inefficaces face à certaines attaques. On distingue généralement trois types de systèmes de détection d’intrusions : détection par anomalies, détection par signatures et détection hybride. La détection par anomalies est fondée sur la caractérisation du comportement habituel du système, typiquement de manière statistique. Elle permet de détecter des attaques connues ou inconnues, mais génère aussi un très grand nombre de faux positifs. La détection par signatures permet de détecter des attaques connues en définissant des règles qui décrivent le comportement connu d’un attaquant. Cela demande une bonne connaissance du comportement de l’attaquant. La détection hybride repose sur plusieurs méthodes de détection incluant celles sus-citées. Elle présente l’avantage d’être plus précise pendant la détection. Des outils tels que Snort et Zeek offrent des langages de bas niveau pour l’expression de règles de reconnaissance d’attaques. Le nombre d’attaques potentielles étant très grand, ces bases de règles deviennent rapidement difficiles à gérer et à maintenir. De plus, l’expression de règles avec état dit stateful est particulièrement ardue pour reconnaître une séquence d’événements. Dans cette thèse, nous proposons une approche stateful basée sur les diagrammes d’état-transition algébriques (ASTDs) afin d’identifier des attaques complexes. Les ASTDs permettent de représenter de façon graphique et modulaire une spécification, ce qui facilite la maintenance et la compréhension des règles. Nous étendons la notation ASTD avec de nouvelles fonctionnalités pour représenter des attaques complexes. Ensuite, nous spécifions plusieurs attaques avec la notation étendue et exécutons les spécifications obtenues sur des flots d’événements à l’aide d’un interpréteur pour identifier des attaques. Nous évaluons aussi les performances de l’interpréteur avec des outils industriels tels que Snort et Zeek. Puis, nous réalisons un compilateur afin de générer du code exécutable à partir d’une spécification ASTD, capable d’identifier de façon efficiente les séquences d’événements.Abstract : The cybersecurity ecosystem continuously evolves with the number, the diversity, and the complexity of cyber attacks. Generally, we have three types of Intrusion Detection System (IDS) : anomaly-based detection, signature-based detection, and hybrid detection. Anomaly detection is based on the usual behavior description of the system, typically in a static manner. It enables detecting known or unknown attacks but also generating a large number of false positives. Signature based detection enables detecting known attacks by defining rules that describe known attacker’s behavior. It needs a good knowledge of attacker behavior. Hybrid detection relies on several detection methods including the previous ones. It has the advantage of being more precise during detection. Tools like Snort and Zeek offer low level languages to represent rules for detecting attacks. The number of potential attacks being large, these rule bases become quickly hard to manage and maintain. Moreover, the representation of stateful rules to recognize a sequence of events is particularly arduous. In this thesis, we propose a stateful approach based on algebraic state-transition diagrams (ASTDs) to identify complex attacks. ASTDs allow a graphical and modular representation of a specification, that facilitates maintenance and understanding of rules. We extend the ASTD notation with new features to represent complex attacks. Next, we specify several attacks with the extended notation and run the resulting specifications on event streams using an interpreter to identify attacks. We also evaluate the performance of the interpreter with industrial tools such as Snort and Zeek. Then, we build a compiler in order to generate executable code from an ASTD specification, able to efficiently identify sequences of events

    Improving the Capabilities of Distributed Collaborative Intrusion Detection Systems using Machine Learning

    Get PDF
    The impact of computer networks on modern society cannot be estimated. Arguably, computer networks are one of the core enablers of the contemporary world. Large computer networks are essential tools which drive our economy, critical infrastructure, education and entertainment. Due to their ubiquitousness and importance, it is reasonable to assume that security is an intrinsic aspect of their design. Yet, due to how networks developed, the security of this communication medium is still an outstanding issue. Proactive and reactive security mechanisms exist to cope with the security problems that arise when computer networks are used. Proactive mechanisms attempt to prevent malicious activity in a network. Prevention alone, however, is not sufficient: it is imprudent to assume that security cannot be bypassed. Reactive mechanisms are responsible for finding malicious activity that circumvents proactive security mechanisms. The most emblematic reactive mechanism for detecting intrusions in a network is known as a Network Intrusion Detection System (NIDS). Large networks represent immense attack surfaces where malicious actors can conceal their intentions by distributing their activities. A single NIDS needs to process massive quantities of traffic to discover malicious distributed activities. As individual NIDS have limited resources and a narrow monitoring scope, large networks need to employ multiple NIDS. Coordinating the detection efforts of NIDS is not a trivial task and, as a result, Collaborative Intrusion Detection System (CIDSs) were conceived. A CIDS is a group of NIDSs that collaborate to exchange information that enables them to detect distributed malicious activities. CIDSs may coordinate NIDSs using different communication overlays. From among the different communication overlays a CIDSs may use, a distributed one promises the most. Distributed overlays are scalable, dynamic, resilient and do not have a single point of failure. Distributed CIDSs, i.e., those using distributed overlays, are preferred in theory, yet not often deployed in practice. Several open issues exist that constraint the use of CIDSs in practice. In this thesis, we propose solutions to address some of the outstanding issues that prevent distributed CIDSs from becoming viable in practice. Our contributions rely on diverse Machine Learning (ML) techniques and concepts to solve these issues. The thesis is structured around five main contributions, each developed within a dedicated chapter. Our specific contributions are as follows. Dataset Generation We survey the intrusion detection research field to analyze and categorize the datasets that are used to develop, compare, and test NIDSs as well as CIDSs. From the defects we found in the datasets, we develop a classification of dataset defects. With our classification of dataset issues, we develop concepts to create suitable datasets for training and testing ML based NIDSs and CIDSs. With our concepts, we injects synthetic attacks into real background traffic. The generated attacks replicate the properties of the background traffic to make attacks as indistinguishable as they can be from real traffic. Intrusion Detection We develop an anomaly-based NIDS capable of overcoming some of the limitations that NIDSs have when they are used in large networks. Our anomaly-based NIDS leverages autoencoders and dropout to create models of normality that accurately describe the behavior of large networks. Our NIDS scales to the number of analyzed features, can learn adequate normality models even when anomalies are present in the learning data, operates in real time, and is accurate with only minimal false positives. Community Formation We formulate concepts to build communities of NIDSs, coined community-based CIDSs, that implement centralized ML algorithms in a distributed environment. Community-based CIDSs detect distributed attacks through the use of ensemble learning. Ensemble learning is used to combine local ML models created by different communities to detect network-wide attacks that individual communities would otherwise struggle to detect. Information Dissemination We design a dissemination strategy specific to CIDSs. The strategy enables NIDSs to efficiently disseminate information to discover and infer when similar network events take place, potentially uncovering distributed attacks. In contrast to other dissemination strategies, our strategy efficiently encodes, aggregates, correlates, and shares network features while minimizing network overhead. We use Sketches to aggregate data and Bayesian Networks to deduce new information from the aggregation process. Collusion Detection We devise an evidence-based trust mechanism that detects if the NIDSs of a CIDS are acting honestly, according to the goals of the CIDS, or dishonestly. The trust mechanism uses the reliability of the sensors and Bayesian-like estimators to compute trust scores. From the trust scores, our mechanism is designed to detect not only single dishonest NIDSs but multiple coalitions of dishonest ones. A coalition is a coordinated group of dishonest NIDSs that lie to boost their trust scores, and to reduce the trust scores of others outside the group

    The Proceedings of 14th Australian Digital Forensics Conference, 5-6 December 2016, Edith Cowan University, Perth, Australia

    Get PDF
    Conference Foreword This is the fifth year that the Australian Digital Forensics Conference has been held under the banner of the Security Research Institute, which is in part due to the success of the security conference program at ECU. As with previous years, the conference continues to see a quality papers with a number from local and international authors. 11 papers were submitted and following a double blind peer review process, 8 were accepted for final presentation and publication. Conferences such as these are simply not possible without willing volunteers who follow through with the commitment they have initially made, and I would like to take this opportunity to thank the conference committee for their tireless efforts in this regard. These efforts have included but not been limited to the reviewing and editing of the conference papers, and helping with the planning, organisation and execution of the conference. Particular thanks go to those international reviewers who took the time to review papers for the conference, irrespective of the fact that they are unable to attend this year. To our sponsors and supporters a vote of thanks for both the financial and moral support provided to the conference. Finally, to the student volunteers and staff of the ECU Security Research Institute, your efforts as always are appreciated and invaluable. Yours sincerely, Conference Chair Professor Craig Valli Director, Security Research Institut

    A Framework for Incident Detection and notification in Vehicular Ad-Hoc Networks

    Get PDF
    The US Department of Transportation (US-DOT) estimates that over half of all congestion events are caused by highway incidents rather than by rush-hour traffic in big cities. The US-DOT also notes that in a single year, congested highways due to traffic incidents cost over $75 billion in lost worker productivity and over 8.4 billion gallons of fuel. Further, the National Highway Traffic Safety Administration (NHTSA) indicates that congested roads are one of the leading causes of traffic accidents, and in 2005 an average of 119 persons died each day in motor vehicle accidents. Recently, Vehicular Ad-hoc Networks (VANET) employing a combination of Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) wireless communication have been proposed to alert drivers to traffic events including accidents, lane closures, slowdowns, and other traffic-safety issues. In this thesis, we propose a novel framework for incident detection and notification dissemination in VANETs. This framework consists of three main components: a system architecture, a traffic incident detection engine and a notification dissemination mechanism. The basic idea of our framework is to collect and aggregate traffic-related data from passing cars and to use the aggregated information to detect traffic anomalies. Finally, the suitably filtered aggregated information is disseminated to alert drivers about traffic delays and incidents. The first contribution of this thesis is an architecture for the notification of traffic incidents, NOTICE for short. In NOTICE, sensor belts are embedded in the road at regular intervals, every mile or so. Each belt consists of a collection of pressure sensors, a simple aggregation and fusion engine, and a few small transceivers. The pressure sensors in each belt allow every message to be associated with a physical vehicle passing over that belt. Thus, no one vehicle can pretend to be multiple vehicles and then, is no need for an ID to be assigned to vehicles. Vehicles in NOTICE are fitted with a tamper-resistant Event Data Recorder (EDR), very much like the well-known black-boxes onboard commercial aircraft. EDRs are responsible for storing vehicles behavior between belts such as acceleration, deceleration and lane changes. Importantly, drivers can provide input to the EDR, using a simple menu, either through a dashboard console or through verbal input. The second contribution of this thesis is to develop incident detection techniques that use the information provided by cars in detecting possible incidents and traffic anomalies using intelligent inference techniques. For this purpose, we developed deterministic and probabilistic techniques to detect both blocking incidents, accidents for examples, as well as non-blocking ones such as potholes. To the best of our knowledge, our probabilistic technique is the first VANET based automatic incident detection technique that is capable of detecting both blocking and non blocking incidents. Our third contribution is to provide an analysis for vehicular traffic proving that VANETs tend to be disconnected in many highway scenarios, consisting of a collection of disjoint clusters. We also provide an analytical way to compute the expected cluster size and we show that clusters are quite stable over time. To the best of our knowledge, we are the first in the VANET community to prove analytically that disconnection is the norm rather than the exceptions in VANETs. Our fourth contribution is to develop data dissemination techniques specifically adapted to VANETs. With VANETs disconnection in mind, we developed data dissemination approaches that efficiently propagate messages between cars and belts on the road. We proposed two data dissemination techniques, one for divided roads and another one for undivided roads. We also proposed a probabilistic technique used by belts to determine how far should an incident notification be sent to alert approaching drivers. Our fifth contribution is to propose a security technique to avoid possible attacks from malicious drivers as well as preserving driver\u27s privacy in data dissemination and notification delivery in NOTICE. We also proposed a belt clustering scheme to reduce the probability of having a black-hole in the message dissemination while reducing also the operational burden if a belt is compromised

    Risk Monitoring and Intrusion Detection for Industrial Control Systems

    Get PDF
    Cyber-attacks on critical infrastructure such as electricity, gas, and water distribution, or power plants, are more and more considered to be a relevant and realistic threat to the European society. Whereas mature solutions like anti-malware applications, intrusion detection systems (IDS) and even intrusion prevention or self-healing systems have been designed for classic computer systems, these techniques have only been partially adapted to the world of Industrial Control Systems (ICS). As a consequence, organisations and nations fall back upon risk management to understand the risks that they are facing. Today's trend is to combine risk management with real-time monitoring to enable prompt reactions in case of attacks. This thesis aims at providing techniques that assist security managers in migrating from a static risk analysis to a real-time and dynamic risk monitoring platform. Risk monitoring encompasses three steps, each being addressed in detail in this thesis: the collection of risk-related information, the reporting of security events, and finally the inclusion of this real-time information into a risk analysis. The first step consists in designing agents that detect incidents in the system. In this thesis, an intrusion detection system is developed to this end, which focuses on an advanced persistent threat (APT) that particularly targets critical infrastructures. The second step copes with the translation of the obtained technical information in more abstract notions of risk, which can then be used in the context of a risk analysis. In the final step, the information collected from the various sources is correlated so as to obtain the risk faced by the entire system. Since industrial environments are characterised by many interdependencies, a dependency model is elaborated which takes dependencies into account when the risk is estimated

    A comprehensive survey of V2X cybersecurity mechanisms and future research paths

    Get PDF
    Recent advancements in vehicle-to-everything (V2X) communication have notably improved existing transport systems by enabling increased connectivity and driving autonomy levels. The remarkable benefits of V2X connectivity come inadvertently with challenges which involve security vulnerabilities and breaches. Addressing security concerns is essential for seamless and safe operation of mission-critical V2X use cases. This paper surveys current literature on V2X security and provides a systematic and comprehensive review of the most relevant security enhancements to date. An in-depth classification of V2X attacks is first performed according to key security and privacy requirements. Our methodology resumes with a taxonomy of security mechanisms based on their proactive/reactive defensive approach, which helps identify strengths and limitations of state-of-the-art countermeasures for V2X attacks. In addition, this paper delves into the potential of emerging security approaches leveraging artificial intelligence tools to meet security objectives. Promising data-driven solutions tailored to tackle security, privacy and trust issues are thoroughly discussed along with new threat vectors introduced inevitably by these enablers. The lessons learned from the detailed review of existing works are also compiled and highlighted. We conclude this survey with a structured synthesis of open challenges and future research directions to foster contributions in this prominent field.This work is supported by the H2020-INSPIRE-5Gplus project (under Grant agreement No. 871808), the ”Ministerio de Asuntos Económicos y Transformacion Digital” and the European Union-NextGenerationEU in the frameworks of the ”Plan de Recuperación, Transformación y Resiliencia” and of the ”Mecanismo de Recuperación y Resiliencia” under references TSI-063000-2021-39/40/41, and the CHIST-ERA-17-BDSI-003 FIREMAN project funded by the Spanish National Foundation (Grant PCI2019-103780).Peer ReviewedPostprint (published version
    • …
    corecore