5,390 research outputs found

    Symmetric Interconnection Networks from Cubic Crystal Lattices

    Full text link
    Torus networks of moderate degree have been widely used in the supercomputer industry. Tori are superb when used for executing applications that require near-neighbor communications. Nevertheless, they are not so good when dealing with global communications. Hence, typical 3D implementations have evolved to 5D networks, among other reasons, to reduce network distances. Most of these big systems are mixed-radix tori which are not the best option for minimizing distances and efficiently using network resources. This paper is focused on improving the topological properties of these networks. By using integral matrices to deal with Cayley graphs over Abelian groups, we have been able to propose and analyze a family of high-dimensional grid-based interconnection networks. As they are built over nn-dimensional grids that induce a regular tiling of the space, these topologies have been denoted \textsl{lattice graphs}. We will focus on cubic crystal lattices for modeling symmetric 3D networks. Other higher dimensional networks can be composed over these graphs, as illustrated in this research. Easy network partitioning can also take advantage of this network composition operation. Minimal routing algorithms are also provided for these new topologies. Finally, some practical issues such as implementability and preliminary performance evaluations have been addressed

    Forwarding and optical indices of 4-regular circulant networks

    Get PDF
    An all-to-all routing in a graph GG is a set of oriented paths of GG, with exactly one path for each ordered pair of vertices. The load of an edge under an all-to-all routing RR is the number of times it is used (in either direction) by paths of RR, and the maximum load of an edge is denoted by π(G,R)\pi(G,R). The edge-forwarding index π(G)\pi(G) is the minimum of π(G,R)\pi(G,R) over all possible all-to-all routings RR, and the arc-forwarding index π→(G)\overrightarrow{\pi}(G) is defined similarly by taking direction into consideration, where an arc is an ordered pair of adjacent vertices. Denote by w(G,R)w(G,R) the minimum number of colours required to colour the paths of RR such that any two paths having an edge in common receive distinct colours. The optical index w(G)w(G) is defined to be the minimum of w(G,R)w(G,R) over all possible RR, and the directed optical index w→(G)\overrightarrow{w}(G) is defined similarly by requiring that any two paths having an arc in common receive distinct colours. In this paper we obtain lower and upper bounds on these four invariants for 44-regular circulant graphs with connection set {±1,±s}\{\pm 1,\pm s\}, 1<s<n/21<s<n/2. We give approximation algorithms with performance ratio a small constant for the corresponding forwarding index and routing and wavelength assignment problems for some families of 44-regular circulant graphs.Comment: 19 pages, no figure in Journal of Discrete Algorithms 201

    Decentralized Routing on Spatial Networks with Stochastic Edge Weights

    Full text link
    We investigate algorithms to find short paths in spatial networks with stochastic edge weights. Our formulation of the problem of finding short paths differs from traditional formulations because we specifically do not make two of the usual simplifying assumptions: (1) we allow edge weights to be stochastic rather than deterministic; and (2) we do not assume that global knowledge of a network is available. We develop a decentralized routing algorithm that provides en route guidance for travelers on a spatial network with stochastic edge weights without the need to rely on global knowledge about the network. To guide a traveler, our algorithm uses an estimation function that evaluates cumulative arrival probability distributions based on distances between pairs of nodes. The estimation function carries a notion of proximity between nodes and thereby enables routing without global knowledge. In testing our decentralized algorithm, we define a criterion that allows one to discriminate among arrival probability distributions, and we test our algorithm and this criterion using both synthetic and real networks.Comment: 10 pages, 9 figures (some with multiple parts
    • …
    corecore