808 research outputs found

    Routing with locality in partitioned-bus meshes

    Get PDF
    We show that adding partitioned-buses (as opposed to long buses that span an entire row or column) to ordinary meshes can reduce the routing time by approximately one-third for permutation routing with locality. A matching time lower bound is also proved. The result can be generalized to multi-packet routing.published_or_final_versio

    Lattice QCD Production on Commodity Clusters at Fermilab

    Full text link
    We describe the construction and results to date of Fermilab's three Myrinet-networked lattice QCD production clusters (an 80-node dual Pentium III cluster, a 48-node dual Xeon cluster, and a 128-node dual Xeon cluster). We examine a number of aspects of performance of the MILC lattice QCD code running on these clusters.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 6 pages, LaTeX, 8 eps figures. PSN TUIT00

    A Comparison of Meshes With Static Buses and Unidirectional Wrap-Arounds

    Get PDF
    We investigate the relative computational powers of a mesh with static buses and a mesh with unidirectional wrap-mounds. A mesh with unidirectional wraparounds is a torus with the restriction that any wraparoundlink of the architecture can only transmit data in one of the two directions at any clock tick. We show that the problem of packet routing can be solved as efficiently on a linear array with unidirectional wrap-around link as on a linear array with a broadcast bus. We also present a routing algorithm for a twcdimensional torus with unidirectional wraparound links whose run time is close to that of the best known algorithm for routing on a mesh with broadcast buses in each dimension. In addition, we show that on a mesh with broadcast buses, sorting can be done in time that is essentially the same as the time needed for packet routing

    Fault-tolerant meshes and hypercubes with minimal numbers of spares

    Get PDF
    Many parallel computers consist of processors connected in the form of a d-dimensional mesh or hypercube. Two- and three-dimensional meshes have been shown to be efficient in manipulating images and dense matrices, whereas hypercubes have been shown to be well suited to divide-and-conquer algorithms requiring global communication. However, even a single faulty processor or communication link can seriously affect the performance of these machines. This paper presents several techniques for tolerating faults in d-dimensional mesh and hypercube architectures. Our approach consists of adding spare processors and communication links so that the resulting architecture will contain a fault-free mesh or hypercube in the presence of faults. We optimize the cost of the fault-tolerant architecture by adding exactly k spare processors (while tolerating up to k processor and/or link faults) and minimizing the maximum number of links per processor. For example, when the desired architecture is a d-dimensional mesh and k = 1, we present a fault-tolerant architecture that has the same maximum degree as the desired architecture (namely, 2d) and has only one spare processor. We also present efficient layouts for fault-tolerant two- and three-dimensional meshes, and show how multiplexers and buses can be used to reduce the degree of fault-tolerant architectures. Finally, we give constructions for fault-tolerant tori, eight-connected meshes, and hexagonal meshes

    Mesh Connected Computers With Multiple Fixed Buses: Packet Routing, Sorting and Selection

    Get PDF
    Mesh connected computers have become attractive models of computing because of their varied special features. In this paper we consider two variations of the mesh model: 1) a mesh with fixed buses, and 2) a mesh with reconfigurable buses. Both these models have been the subject matter of extensive previous research. We solve numerous important problems related to packet routing, sorting, and selection on these models. In particular, we provide lower bounds and very nearly matching upper bounds for the following problems on both these models: 1) Routing on a linear array; and 2) k-k routing, k-k sorting, and cut through routing on a 2D mesh for any k ≥ 12. We provide an improved algorithm for 1-1 routing and a matching sorting algorithm. In addition we present greedy algorithms for 1-1 routing, k-k routing, cut through routing, and k-k sorting that are better on average and supply matching lower bounds. We also show that sorting can be performed in logarithmic time on a mesh with fixed buses. As a consequence we present an optimal randomized selection algorithm. In addition we provide a selection algorithm for the mesh with reconfigurable buses whose time bound is significantly better than the existing ones. Our algorithms have considerably better time bounds than many existing best known algorithms

    VLSI implementation of a multi-mode turbo/LDPC decoder architecture

    Get PDF
    Flexible and reconfigurable architectures have gained wide popularity in the communications field. In particular, reconfigurable architectures for the physical layer are an attractive solution not only to switch among different coding modes but also to achieve interoperability. This work concentrates on the design of a reconfigurable architecture for both turbo and LDPC codes decoding. The novel contributions of this paper are: i) tackling the reconfiguration issue introducing a formal and systematic treatment that, to the best of our knowledge, was not previously addressed; ii) proposing a reconfigurable NoCbased turbo/LDPC decoder architecture and showing that wide flexibility can be achieved with a small complexity overhead. Obtained results show that dynamic switching between most of considered communication standards is possible without pausing the decoding activity. Moreover, post-layout results show that tailoring the proposed architecture to the WiMAX standard leads to an area occupation of 2.75 mm2 and a power consumption of 101.5 mW in the worst case

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    Timely Data Delivery in a Realistic Bus Network

    Get PDF
    Abstract—WiFi-enabled buses and stops may form the backbone of a metropolitan delay tolerant network, that exploits nearby communications, temporary storage at stops, and predictable bus mobility to deliver non-real time information. This paper studies the problem of how to route data from its source to its destination in order to maximize the delivery probability by a given deadline. We assume to know the bus schedule, but we take into account that randomness, due to road traffic conditions or passengers boarding and alighting, affects bus mobility. We propose a simple stochastic model for bus arrivals at stops, supported by a study of real-life traces collected in a large urban network. A succinct graph representation of this model allows us to devise an optimal (under our model) single-copy routing algorithm and then extend it to cases where several copies of the same data are permitted. Through an extensive simulation study, we compare the optimal routing algorithm with three other approaches: minimizing the expected traversal time over our graph, minimizing the number of hops a packet can travel, and a recently-proposed heuristic based on bus frequencies. Our optimal algorithm outperforms all of them, but most of the times it essentially reduces to minimizing the expected traversal time. For values of deadlines close to the expected delivery time, the multi-copy extension requires only 10 copies to reach almost the performance of the costly flooding approach. I
    corecore