9 research outputs found

    Teoria de jogos para utilização efetiva dos recursos em aplicações para 5G

    Get PDF
    Doutoramento em Engenharia Eletrotécnica - TelecomunicaçõesEsta tese tem como objetivo fornecer afirmações conclusivas em relação a utilização eficiente de recursos para redes e aplicações de 5G (5a geração) com recurso a teoria dos jogos. Neste contexto, investigamos dois cenários principais, um relativo a comunicações móveis e um outro relativo a redes inteligentes. Uma métrica importante para o desenho das redes móveis emergentes é a eficiência energética, com particular ênfase no lado do dispositivo móvel, onde as tecnologias das baterias são ainda limitadas. Alguns trabalhos de investigação relacionados têm demonstrado que a cooperação pode ser um paradigma útil no sentido de resolver o problema do défice energético. Contudo, pretendemos ir mais além, ao definir a cooperação e os utilizadores móveis como um grupo de jogadores racionais, que podem atuar sobre estratégias e utilidades, por forma a escolher a retransmissão mais apropriada para poupança de energia. Esta interpretação presta-se à aplicação da teoria dos jogos, e recorremos assim aos jogos coalicionais para solucionar conflitos de interesse entre dispositivos cooperantes, empregando Programação Linear (LP) para resolver o problema da selecção da retransmissão e derivar a principal solução do jogo. Os resultados mostram que a escolha do jogo de retransmissão coalicional proposto pode potencialmente duplicar a duração da bateria, numa era em que a próxima geração de dispositivos móveis necessitará de cada vez mais energia para suportar serviços e aplicações cada vez mais sofisticados. O segundo cenário investiga a resposta da procura em aplicações smart grid, que está a ganhar interesse sob a égide do 5G e que é considerada uma abordagem promissora, incentivando os utilizadores a consumir electricidade de forma mais uniforme em horas de vazio. Recorremos novamente à teoria dos jogos, imaginando as interacções estratégicas entre a empresa fornecedora de energia eléctrica e os potenciais utilizadores finais como um jogo de forma extensiva. São abordados dois programas em tempo real de resposta à procura: Day-Ahead Pricing (DAP) e Convex Pricing Tariffs. A resposta dos consumidores residenciais conscientes dos preços destas tarifas, é formulada como um problema de Mixed Integer Linear Programming (MILP) ou Quadratic Programming (QP), nos quais as soluções potenciais são o agendamento dos seus electrodomésticos inteligentes de modo a minimizar os seus gastos diários de electricidade, satisfazendo as suas necessidades diárias de energia e níveis de conforto. Os resultados demonstram que implementar o programa DAP pode reduzir a razão Peak-to-Average (PAR) at e 71% e as faturas de consumo das casas inteligentes at e 32%. Para além disso, a aplicação de tarifas convexas em tempo real pode melhorar ainda mais estas métricas de desempenho, alcançando uma redução de 80% do PAR e uma economia de mais de 50% na faturação da energia residencial.This research thesis aims to provide conclusive statements towards effective resource utilization for 5G (5th Generation) mobile networks and applications using game theory. In this context, we investigate two key scenarios pertaining to mobile communications and smart grids. A pivotal design driver for the upcoming era of mobile communications is energy efficiency, with particular emphasis on the mobile side where battery technology is still limited. Related works have shown that cooperation can be a useful engineering paradigm to take a step towards solving the energy deficit. However, we go beyond by envisaging cooperation and mobile users as a game of rational players, that can act on strategies and utilities in order to choose the most appropriate relay for energy saving. This interpretation lends itself to the application of game theory, and we look at coalitional games to settle conflicts of interest among cooperating user equipments, and employ Linear Programming (LP) to solve the relay selection problem and to derive the core solution of the game. The results reveal that adopting the proposed coalitional relaying game can potentially double battery lifetime, in an era where the next wave of next generation handsets will be more energy demanding supporting sophisticated services and applications. The second scenario investigates demand response in smart grid applications, which is also gaining momentum under the umbrella of 5G, which is a promising approach urging end-users to consume electricity more evenly during nonpeak hours of the day. Again, we resort to game theory and picture the strategic interactions between the electric utility company and the potential end-users as an extensive form game. Two real-time demand response programmes are addressed, namely Day-Ahead Pricing (DAP) and convex pricing tariffs. The response of price-aware residential consumers to these programmes is formulated as Mixed Integer Linear Programming (MILP) or Quadratic Programming (QP) problem, which optimally schedule their smart home appliances so as to minimise their daily electricity expenses while satisfying their daily energy needs and comfort levels. The results demonstrate that implementing the DAP programme can reduce the Peakto- Average Ratio (PAR) of demand by up to 71% and cut smart households bill by 32%. Moreover, applying real-time convex pricing tariffs can push these performance metrics even further, achieving 80% PAR reduction and more than 50% saving on the household electricity bill

    Power-efficient resource allocation in a heterogeneous network with cellular and D2D capabilities

    Get PDF
    This paper focuses on a heterogeneous scenario in which cellular and wireless local area technologies coexist and in which mobile devices are enabled with device-to-device communication capabilities. In this context, this paper assumes a network architecture in which a given user equipment (UE) can receive mobile service either by connecting directly to a cellular base station or by connecting through another UE that acts as an access point and relays the traffic from a cellular base station. The paper investigates the optimization of the connectivity of different UEs with the target to minimize the total transmission power. An optimization framework is presented, and a distributed strategy based on Q-learning and softmax decision making is proposed as a means to solve the considered problem with reduced complexity. The proposed strategy is evaluated under different conditions, and it is shown that the strategy achieves a performance very close to the optimum. Moreover, significant transmission power reductions of approximately 40% are obtained with respect to the classical approach, in which all UEs are connected to the cellular infrastructure. For multi-cell scenarios, in which the optimum solution cannot be easily known a priori, the proposed approach is compared against a centralized genetic algorithm. The proposed approach achieves similar performance in terms of total transmitted power, while exhibiting much lower computational requirements.Peer ReviewedPostprint (author's final draft

    Cooperative Internet access using heterogeneous wireless networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Integrating Context-Awareness in the IP Multimedia Subsystem for Enhanced Session Control and Service Provisioning Capabilities

    Get PDF
    The 3GPP-defined IP Multimedia Subsystem (IMS) is becoming the de-facto standard for IP-based multimedia communication services. It consists of an overlay control and service layer that is deployed on top of IP-based mobile and fixed networks. This layer encompasses a set of common functions (e.g. session control functions allowing the initiation/modification/termination of sessions) and service logics that are needed for the seamless provisioning of IP multimedia services to users, via different access technologies. As it continues to evolve, the IMS still faces several challenges including: the enabling of innovative and personalized services that would appeal to users and increase network operators' revenues; its interaction with other types of networks (e.g. wireless sensor networks) as means to enhance its capabilities; and the support of advanced QoS schemes that would manage the network resources in an efficient and adaptive manner. The context-awareness concept, which comes from the pervasive computing field, signifies the ability to use situational information (or context) in support to operations and decision making and for the provision of relevant services to the user. Context-awareness is considered to enhance users' experience and is seen as an enabler to adaptability and service personalization - two capabilities that could play important roles in telecommunication environments. This thesis focuses on the introduction of the context-awareness technology in the IMS, as means to enhance its session control and service provisioning capabilities. It starts by presenting the necessary background information, followed by a derivation of requirements and a review of the related work. To ensure the availability of contextual information within the network, we then propose an architecture for context information acquisition and management in the IMS. This architecture leverages and extends the 3GPP presence framework. Building on the capabilities of this architecture, we demonstrate how the managed information could be integrated in IMS operations, at the control and service levels. Showcasing control level integration, we propose a novel context-aware call differentiation framework as means to offer enhanced QoS support (for sessions/calls) in IMS-based networks. This framework enables the differentiation between different categories of calls at the IMS session control level, via dynamic and adaptive resource allocation, in addition to supporting a specialized charging model. Furthermore, we also propose a framework for enhanced IMS emergency communication services. This framework addresses the limitations of existing IP-based emergency solutions, by offering three main improvements: a QoS-enhanced emergency service; a context-aware personalized emergency service; and a conferencing-enhanced emergency service. We demonstrate the use of context awareness at the IMS service level using two new context-aware IMS applications. Finally, to validate our solutions and evaluate their performance, we build various proof-of-concept prototypes and OPNET simulation model

    Digitising the Industry Internet of Things Connecting the Physical, Digital and VirtualWorlds

    Get PDF
    This book provides an overview of the current Internet of Things (IoT) landscape, ranging from the research, innovation and development priorities to enabling technologies in a global context. A successful deployment of IoT technologies requires integration on all layers, be it cognitive and semantic aspects, middleware components, services, edge devices/machines and infrastructures. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC - Internet of Things European Research Cluster from research to technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster and the IoT European Platform Initiative (IoT-EPI) and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in the next years. The IoT is bridging the physical world with virtual world and requires sound information processing capabilities for the "digital shadows" of these real things. The research and innovation in nanoelectronics, semiconductor, sensors/actuators, communication, analytics technologies, cyber-physical systems, software, swarm intelligent and deep learning systems are essential for the successful deployment of IoT applications. The emergence of IoT platforms with multiple functionalities enables rapid development and lower costs by offering standardised components that can be shared across multiple solutions in many industry verticals. The IoT applications will gradually move from vertical, single purpose solutions to multi-purpose and collaborative applications interacting across industry verticals, organisations and people, being one of the essential paradigms of the digital economy. Many of those applications still have to be identified and involvement of end-users including the creative sector in this innovation is crucial. The IoT applications and deployments as integrated building blocks of the new digital economy are part of the accompanying IoT policy framework to address issues of horizontal nature and common interest (i.e. privacy, end-to-end security, user acceptance, societal, ethical aspects and legal issues) for providing trusted IoT solutions in a coordinated and consolidated manner across the IoT activities and pilots. In this, context IoT ecosystems offer solutions beyond a platform and solve important technical challenges in the different verticals and across verticals. These IoT technology ecosystems are instrumental for the deployment of large pilots and can easily be connected to or build upon the core IoT solutions for different applications in order to expand the system of use and allow new and even unanticipated IoT end uses. Technical topics discussed in the book include: • Introduction• Digitising industry and IoT as key enabler in the new era of Digital Economy• IoT Strategic Research and Innovation Agenda• IoT in the digital industrial context: Digital Single Market• Integration of heterogeneous systems and bridging the virtual, digital and physical worlds• Federated IoT platforms and interoperability• Evolution from intelligent devices to connected systems of systems by adding new layers of cognitive behaviour, artificial intelligence and user interfaces.• Innovation through IoT ecosystems• Trust-based IoT end-to-end security, privacy framework• User acceptance, societal, ethical aspects and legal issues• Internet of Things Application

    Digitising the Industry Internet of Things Connecting the Physical, Digital and VirtualWorlds

    Get PDF
    This book provides an overview of the current Internet of Things (IoT) landscape, ranging from the research, innovation and development priorities to enabling technologies in a global context. A successful deployment of IoT technologies requires integration on all layers, be it cognitive and semantic aspects, middleware components, services, edge devices/machines and infrastructures. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC - Internet of Things European Research Cluster from research to technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster and the IoT European Platform Initiative (IoT-EPI) and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in the next years. The IoT is bridging the physical world with virtual world and requires sound information processing capabilities for the "digital shadows" of these real things. The research and innovation in nanoelectronics, semiconductor, sensors/actuators, communication, analytics technologies, cyber-physical systems, software, swarm intelligent and deep learning systems are essential for the successful deployment of IoT applications. The emergence of IoT platforms with multiple functionalities enables rapid development and lower costs by offering standardised components that can be shared across multiple solutions in many industry verticals. The IoT applications will gradually move from vertical, single purpose solutions to multi-purpose and collaborative applications interacting across industry verticals, organisations and people, being one of the essential paradigms of the digital economy. Many of those applications still have to be identified and involvement of end-users including the creative sector in this innovation is crucial. The IoT applications and deployments as integrated building blocks of the new digital economy are part of the accompanying IoT policy framework to address issues of horizontal nature and common interest (i.e. privacy, end-to-end security, user acceptance, societal, ethical aspects and legal issues) for providing trusted IoT solutions in a coordinated and consolidated manner across the IoT activities and pilots. In this, context IoT ecosystems offer solutions beyond a platform and solve important technical challenges in the different verticals and across verticals. These IoT technology ecosystems are instrumental for the deployment of large pilots and can easily be connected to or build upon the core IoT solutions for different applications in order to expand the system of use and allow new and even unanticipated IoT end uses. Technical topics discussed in the book include: • Introduction• Digitising industry and IoT as key enabler in the new era of Digital Economy• IoT Strategic Research and Innovation Agenda• IoT in the digital industrial context: Digital Single Market• Integration of heterogeneous systems and bridging the virtual, digital and physical worlds• Federated IoT platforms and interoperability• Evolution from intelligent devices to connected systems of systems by adding new layers of cognitive behaviour, artificial intelligence and user interfaces.• Innovation through IoT ecosystems• Trust-based IoT end-to-end security, privacy framework• User acceptance, societal, ethical aspects and legal issues• Internet of Things Application

    Systematic Approaches for Telemedicine and Data Coordination for COVID-19 in Baja California, Mexico

    Get PDF
    Conference proceedings info: ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologies Raleigh, HI, United States, March 24-26, 2023 Pages 529-542We provide a model for systematic implementation of telemedicine within a large evaluation center for COVID-19 in the area of Baja California, Mexico. Our model is based on human-centric design factors and cross disciplinary collaborations for scalable data-driven enablement of smartphone, cellular, and video Teleconsul-tation technologies to link hospitals, clinics, and emergency medical services for point-of-care assessments of COVID testing, and for subsequent treatment and quar-antine decisions. A multidisciplinary team was rapidly created, in cooperation with different institutions, including: the Autonomous University of Baja California, the Ministry of Health, the Command, Communication and Computer Control Center of the Ministry of the State of Baja California (C4), Colleges of Medicine, and the College of Psychologists. Our objective is to provide information to the public and to evaluate COVID-19 in real time and to track, regional, municipal, and state-wide data in real time that informs supply chains and resource allocation with the anticipation of a surge in COVID-19 cases. RESUMEN Proporcionamos un modelo para la implementación sistemática de la telemedicina dentro de un gran centro de evaluación de COVID-19 en el área de Baja California, México. Nuestro modelo se basa en factores de diseño centrados en el ser humano y colaboraciones interdisciplinarias para la habilitación escalable basada en datos de tecnologías de teleconsulta de teléfonos inteligentes, celulares y video para vincular hospitales, clínicas y servicios médicos de emergencia para evaluaciones de COVID en el punto de atención. pruebas, y para el tratamiento posterior y decisiones de cuarentena. Rápidamente se creó un equipo multidisciplinario, en cooperación con diferentes instituciones, entre ellas: la Universidad Autónoma de Baja California, la Secretaría de Salud, el Centro de Comando, Comunicaciones y Control Informático. de la Secretaría del Estado de Baja California (C4), Facultades de Medicina y Colegio de Psicólogos. Nuestro objetivo es proporcionar información al público y evaluar COVID-19 en tiempo real y rastrear datos regionales, municipales y estatales en tiempo real que informan las cadenas de suministro y la asignación de recursos con la anticipación de un aumento de COVID-19. 19 casos.ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologieshttps://doi.org/10.1007/978-981-99-3236-

    Allocations de ressources dans les réseaux sans fils énergétiquement efficaces.

    Get PDF
    In this thesis, we investigate two techniques used for enhancing the energy orspectral efficiency of the network. In the first part of the thesis, we propose tocombine the network future context prediction capabilities with the well-knownlatency vs. energy efficiency tradeoff. In that sense, we consider a proactivedelay-tolerant scheduling problem. In this problem, the objective consists ofdefining the optimal power strategies of a set of competing users, which minimizesthe individual power consumption, while ensuring a complete requestedtransmission before a given deadline. We first investigate the single user versionof the problem, which serves as a preliminary to the concepts of delay tolerance,proactive scheduling, power control and optimization, used through the first halfof this thesis. We then investigate the extension of the problem to a multiusercontext. The conducted analysis of the multiuser optimization problem leads toa non-cooperative dynamic game, which has an inherent mathematical complexity.In order to address this complexity issue, we propose to exploit the recenttheoretical results from the Mean Field Game theory, in order to transitionto a more tractable game with lower complexity. The numerical simulationsprovided demonstrate that the power strategies returned by the Mean FieldGame closely approach the optimal power strategies when it can be computed(e.g. in constant channels scenarios), and outperform the reference heuristicsin more complex scenarios where the optimal power strategies can not be easilycomputed.In the second half of the thesis, we investigate a dual problem to the previousoptimization problem, namely, we seek to optimize the total spectral efficiencyof the system, in a constant short-term power configuration. To do so, we proposeto exploit the recent advances in interference classification. the conductedanalysis reveals that the system benefits from adapting the interference processingtechniques and spectral efficiencies used by each pair of Access Point (AP) and User Equipment (UE). The performance gains offered by interferenceclassification can also be enhanced by considering two improvements. First, wepropose to define the optimal groups of interferers: the interferers in a samegroup transmit over the same spectral resources and thus interfere, but can processinterference according to interference classification. Second, we define theconcept of ’Virtual Handover’: when interference classification is considered,the optimal Access Point for a user is not necessarily the one providing themaximal SNR. For this reason, defining the AP-UE assignments makes sensewhen interference classification is considered. The optimization process is thenthreefold: we must define the optimal i) interference processing technique andspectral efficiencies used by each AP-UE pair in the system; ii) the matching ofinterferers transmitting over the same spectral resources; and iii) define the optimalAP-UE assignments. Matching and interference classification algorithmsare extensively detailed in this thesis and numerical simulations are also provided,demonstrating the performance gain offered by the threefold optimizationprocedure compared to reference scenarios where interference is either avoidedwith orthogonalization or treated as noise exclusively.Dans le cadre de cette thèse, nous nous intéressons plus particulièrement àdeux techniques permettant d’améliorer l’efficacité énergétique ou spectrale desréseaux sans fil. Dans la première partie de cette thèse, nous proposons de combinerles capacités de prédictions du contexte futur de transmission au classiqueet connu tradeoff latence - efficacité énergétique, amenant à ce que l’on nommeraun réseau proactif tolérant à la latence. L’objectif dans ce genre de problèmesconsiste à définir des politiques de transmissions optimales pour un ensembled’utilisateur, qui garantissent à chacun de pouvoir accomplir une transmissionavant un certain délai, tout en minimisant la puissance totale consommée auniveau de chaque utilisateur. Nous considérons dans un premier temps le problèmemono-utilisateur, qui permet alors d’introduire les concepts de tolérance àla latence, d’optimisation et de contrôle de puissance qui sont utilisés dans lapremière partie de cette thèse. L’extension à un système multi-utilisateurs estensuite considérée. L’analyse révèle alors que l’optimisation multi-utilisateurpose problème du fait de sa complexité mathématique. Mais cette complexitépeut néanmoins être contournée grâce aux récentes avancées dans le domainede la théorie des jeux à champs moyens, théorie qui permet de transiter d’unjeu multi-utilisateur, vers un jeu à champ moyen, à plus faible complexité. Lessimulations numériques démontrent que les stratégies de puissance retournéespar l’approche jeu à champ moyen approchent notablement les stratégies optimaleslorsqu’elles peuvent être calculées, et dépassent les performances desheuristiques communes, lorsque l’optimum n’est plus calculable, comme c’est lecas lorsque le canal varie au cours du temps.Dans la seconde partie de cettethèse, nous investiguons un possible problème dual au problème précédent. Plusspécifiquement, nous considérons une approche d’optimisation d’efficacité spectrale,à configuration de puissance constante. Pour ce faire, nous proposonsalors d’étudier l’impact sur le réseau des récentes avancées en classification d’interférence.L’analyse conduite révèle que le système peut bénéficier d’uneadaptation des traitements d’interférence faits à chaque récepteur. Ces gainsobservés peuvent également être améliorés par deux altérations de la démarched’optimisation. La première propose de redéfinir les groupes d’interféreurs decellules concurrentes, supposés transmettre sur les mêmes ressources spectrales.L’objectif étant alors de former des paires d’interféreurs “amis”, capables detraiter efficacement leurs interférences réciproques. La seconde altération portele nom de “Virtual Handover” : lorsque la classification d’interférence est considérée,l’access point offrant le meilleur SNR n’est plus nécessairement le meilleuraccess point auquel assigner un utilisateur. Pour cette raison, il est donc nécessairede laisser la possibilité au système de pouvoir choisir par lui-même la façondont il procède aux assignations des utilisateurs. Le processus d’optimisationse décompose donc en trois parties : i) Définir les coalitions d’utilisateurs assignésà chaque access point ; ii) Définir les groupes d’interféreurs transmettantsur chaque ressource spectrale ; et iii) Définir les stratégies de transmissionet les traitements d’interférences optimaux. L’objectif de l’optimisationest alors de maximiser l’efficacité spectrale totale du système après traitementde l’interférence. Les différents algorithmes utilisés pour résoudre, étape parétape, l’optimisation globale du système sont détaillés. Enfin, des simulationsnumériques permettent de mettre en évidence les gains de performance potentielsofferts par notre démarche d’optimisation
    corecore