119 research outputs found

    Light-Hierarchy: The Optimal Structure for Multicast Routing in WDM Mesh Networks

    Get PDF
    Based on the false assumption that multicast incapable (MI) nodes could not be traversed twice on the same wavelength, the light-tree structure was always thought to be optimal for multicast routing in sparse splitting Wavelength Division Multiplexing (WDM) networks. In fact, for establishing a multicast session, an MI node could be crosswise visited more than once to switch a light signal towards several destinations with only one wavelength through different input and output pairs. This is called Cross Pair Switching (CPS). Thus, a new multicast routing structure light-hierarchy is proposed for all-optical multicast routing, which permits the cycles introduced by the CPS capability of MI nodes. We proved that the optimal structure for minimizing the cost of multicast routing is a set of light-hierarchies rather than the light-trees in sparse splitting WDM networks. Integer linear programming (ILP) formulations are developed to search the optimal light-hierarchies. Numerical results verified that the light-hierarchy structure could save more cost than the light-tree structure

    Heuristic for Lowering Electricity Costs for Routing in Optical Data Center Networks

    Get PDF
    Optical data centers consume a large quantity of energy and the cost of that energy has a significant contribution to the operational cost in data centers. The amount of electricity consumption in data centers and their related costs are increasing day by day. Data centers are geographically distributed all around the continents and the growing numbers of data replicas have made it possible to find more cost effective network routing. Besides flat-rate prices, today, there are companies which offers real-time pricing. In order to address the energy consumption cost problem, we propose an energy efficient routing scheme to find least cost path to the replicas based on real-time pricing model called energy price aware routing (EPAR). Our research considers anycast data transmission model to find the suitable replica as well as the fixed window traffic allocation model for demand request to reduce the energy consumption cost of data center networks

    Computation of Dispersion Penalty for the Analysis of WDM Link Quality

    Get PDF
    The provisioning of light path over WDM/DWDM network is a challenging factor, which depends on various physical layer impairments such as dispersion in fiber. We proposed a light path provisioning mechanism by considering the effect of dispersion in fiber termed as dispersion penalty, which is the prominent effect at high speed WDM network. In the case of non-ideal filter, light path provisioning without considering the physical layer impairments does not satisfy the signal quality guaranteed transmission. In this algorithm, Quality of Service is described in terms of dispersion penalty values with an assumption that the entire client has a requirement of penalty less than 2 Db. Here we have analyzed the degradation in bit rate due to the effect of dispersion. The maximum possible length of fiber is also reduced due to high dispersion in fiber. Dispersion penalty is the increment in the received power to eliminate the effect of some undesirable distortion in optical fiber. Dispersion penalty is calculated in terms of bit rate and band width for each data path. The proposal of dispersion penalty budgeting is to ensure that the optical power reaching the receiver is adequate under all circumstances. The proposed algorithm defines a mechanism for effective light path provisioning by comparing the requirement of client and the available resources of the network

    Design and provisioning of WDM networks for traffic grooming

    Get PDF
    Wavelength Division Multiplexing (WDM) is the most viable technique for utilizing the enormous amounts of bandwidth inherently available in optical fibers. However, the bandwidth offered by a single wavelength in WDM networks is on the order of tens of Gigabits per second, while most of the applications\u27 bandwidth requirements are still subwavelength. Therefore, cost-effective design and provisioning of WDM networks require that traffic from different sessions share bandwidth of a single wavelength by employing electronic multiplexing at higher layers. This is known as traffic grooming. Optical networks supporting traffic grooming are usually designed in a way such that the cost of the higher layer equipment used to support a given traffic matrix is reduced. In this thesis, we propose a number of optimal and heuristic solutions for the design and provisioning of optical networks for traffic grooming with an objective of network cost reduction. In doing so, we address several practical issues. Specifically, we address the design and provisioning of WDM networks on unidirectional and bidirectional rings for arbitrary unicast traffic grooming, and on mesh topologies for arbitrary multipoint traffic grooming. In multipoint traffic grooming, we address both multicast and many-to-one traffic grooming problems. We provide a unified frame work for optimal and approximate network dimensioning and channel provisioning for the generic multicast traffic grooming problem, as well as some variants of the problem. For many-to-one traffic grooming we propose optimal as well as heuristic solutions. Optimal formulations which are inherently non-linear are mapped to an optimal linear formulation. In the heuristic solutions, we employ different problem specific search strategies to explore the solution space. We provide a number of experimental results to show the efficacy of our proposed techniques for the traffic grooming problem in WDM networks

    On the offline physical layer impairment aware RWA algorithms in transparent optical networks: state-of-the-art and beyond

    Get PDF
    In transparent optical networks with no regeneration, the problem of capacity allocation to traffic demands is called "Roting and Wavelength Assignment". Much work on this topic recently has focused on the dynamic case, whereby demands arrive and must be served in real-time. In addition, due to lack of regeneration, physical impairments accumulate as light propagates and QoT may become inappropiate (e.g., too high Bit Error Rate). Considering the physical layer impairments in the network planning phase gives rise to a class of RWA algorithms: offline Physical Layer Impairment Aware- (PLIA-)RWA. This paper makes a survey of such algorithms, proposes a taxonomy, and a comparison between these algorithms for common metrics. We also propose a novel offline PLIA-RWA algorithm, called POLIO-RWA, and show through simulations that it decreases blocking rate compared with other PLIA-RWA algorithms.Postprint (published version

    Multicast Routing In Optical Access Networks

    Get PDF
    Widely available broadband services in the Internet require high capacity access networks. Only optical networking is able to efficiently provide the huge bandwidth required by multimedia applications. Distributed applications such as Video-Conferencing, HDTV, VOD and Distance Learning are increasingly common and produce a large amount of data traffic, typically between several terminals. Multicast is a bandwidth-efficient technique for one-to-many or many-to-many communications, and will be indispensable for serving multimedia applications in future optical access networks. These applications require robust and reliable connections as well as the satisfaction of QoS criteria. In this chapter, several access network architectures and related multicast routing methods are analyzed. Overall network performance and dependability are the focus of our analysis

    Multicast protection and energy efficient traffic grooming in optical wavelength routing networks.

    Get PDF
    Zhang, Shuqiang.Thesis (M.Phil.)--Chinese University of Hong Kong, 2010.Includes bibliographical references (p. 74-80).Abstracts in English and Chinese.Abstract --- p.i摘要 --- p.ivAcknowledgements --- p.vTable of Contents --- p.viChapter Chapter 1 --- Background --- p.1Chapter 1.1 --- Routing and Wavelength Assignment --- p.1Chapter 1.2 --- Survivability in Optical Networks --- p.3Chapter 1.3 --- Optical Multicasting --- p.4Chapter 1.3.1 --- Routing and Wavelength Assignment of Optical Multicast --- p.5Chapter 1.3.2 --- Current Research Topics about Optical Multicast --- p.8Chapter 1.4 --- Traffic Grooming --- p.10Chapter 1.4.1 --- Static Traffic Grooming --- p.11Chapter 1.4.2 --- Dynamic Traffic Grooming --- p.13Chapter 1.5 --- Contributions --- p.15Chapter 1.5.1 --- Multicast Protection with Scheduled Traffic Model --- p.15Chapter 1.5.2 --- Energy Efficient Time-Aware Traffic Grooming --- p.16Chapter 1.6 --- Organization of Thesis --- p.18Chapter Chapter 2 --- Multicast Protection in WDM Optical Network with Scheduled Traffic --- p.19Chapter 2.1 --- Introduction --- p.19Chapter 2.2 --- Multicast Protection under FSTM --- p.22Chapter 2.3 --- Illustrative Examples --- p.28Chapter 2.4 --- Two-Step Optimization under SSTM --- p.37Chapter 2.5 --- Summary --- p.40Chapter Chapter 3 --- Energy Efficient Time-Aware Traffic Grooming in Wavelength Routing Networks --- p.41Chapter 3.1 --- Introduction --- p.41Chapter 3.2 --- Energy consumption model --- p.43Chapter 3.3 --- Static Traffic Grooming with Time awareness --- p.44Chapter 3.3.1 --- Scheduled Traffic Model for Traffic Grooming --- p.44Chapter 3.3.2 --- ILP Formulation --- p.44Chapter 3.3.3 --- Illustrative Numerical Example --- p.48Chapter 3.4 --- Dynamic Traffic Grooming with Time Awareness --- p.49Chapter 3.4.1 --- Time-Aware Traffic Grooming (TATG) --- p.51Chapter 3.5 --- Simulation Results of Dynamic Traffic Grooming --- p.54Chapter 3.5.1 --- 24-node USNET: --- p.55Chapter 3.5.2 --- 15-node Pacific Bell Network: --- p.59Chapter 3.5.3 --- 14-node NSFNET: --- p.63Chapter 3.5.4 --- Alternative Configuration of Simulation Parameters: --- p.67Chapter 3.6 --- Summary --- p.71Chapter Chapter 4 --- Conclusions and Future Work --- p.72Chapter 4.1 --- Conclusions --- p.72Chapter 4.2 --- Future Work --- p.73Bibliography --- p.74Publications during M.Phil Study --- p.8
    corecore