23,457 research outputs found

    A Survey of QoS Routing Protocols for Ad Hoc Networks

    Get PDF
    The aim of this paper is to give a big survey in enhancing the balance of the routing load and the consumption of resources using network layer metrics for the path discovery in the MAODV protocol. A ad hoc network (AD HOC NETWORKS) consists of a collection of wireless mobile nodes, which form a temporary network without relying on any existing infrastructure or centralized administration. The bandwidth of the ad hoc networks architecture is limited and shared between the participating nodes in the network, therefore an efficient utilization of the network bandwidth is very important. Multicasting technology can minimize the consumption of the link bandwidth and reduce the communication cost too. As multimedia and group-oriented computing gains more popularity for users of ad hoc networks, the effective Quality of Service (QoS) of the multicasting protocol plays a significant role in ad hoc networks. In this paper we propose a reconstruction of the MAODV protocol by extending some featuring QoS in MAODV. All simulations are prepared with the NS2 simulator and compare the performance of this algorithm with the MAODV algorithm. The achieved results illustrate faster path discovery and more performing routing balance in the use of MAODV-Extension.This paper would give relatively a modest support in Mobile Technology according to QoS communication

    QoS model for Mobile ad hoc network

    Get PDF
    Diplomová práce "QoS model pro mobilní ad hoc síť" se zabývá problematikou zajištění kvality služeb v MANET (Mobile ad hoc) sítích. V této diplomové práci je proveden popis MANET sítí a teoretický rozbor směrovacích protokolů s podporou QoS (Quality of Service). Dále je v zpracován postup tvorby modelu MANET sítě s podporou směrovacího protokolu DSDV (Destination-Sequenced Distance Vector) v simulačním prostředí NS-3 (Network Simulator 3) a jeho doplnění o podporu QoS. Použitý QoS model je následně upraven s důrazem na zlepšení klíčových parametrů provozu. Simulací funkčního modelu je ověřena implementace QoS, zlepšení parametrů zpoždění a jitter (zpoždění mezi vybranými pakety).The diploma thesis "QoS model for Mobile ad hoc network" focuses on the quality of services in MANET (Mobile Ad-hoc) networks. It describes MANET networks and covers the theoretical analysis of routing protocols with QoS (Quality of Service) support. Furthermore, there is processed the creation process of model MANET networks with the routing protocol DSDV (Destination-Sequenced Distance Vector) in the simulation environment NS-3 (Network Simulator 3) and its extension of QoS support. The used QoS model is subsequently modified to improve core operating parameters. The implementation of QoS parameters as well as the improvement of delay and jitter (the delay between selected packets) is verified by the functional simulation.

    Quality of Service Issues for Reinforcement Learning Based Routing Algorithm for Ad-Hoc Networks

    Get PDF
    Mobile ad-hoc networks are dynamic networks which are decentralized and autonomous in nature. Many routing algorithms have been proposed for these dynamic networks. It is an important problem to model Quality of Service requirements on these types of algorithms which traditionally have certain limitations. To model this scenario we have considered a reinforcement learning algorithm SAMPLE. SAMPLE promises to deal effectively with congestion and under high traffic load. As it is natural for ad-hoc networks to move in groups, we have considered the various group mobility models. The Pursue Mobility Model with its superiormobilitymetrics exhibits better performance. At the data link layer we have considered IEEE 802.11e, a MAC layer which has provisions to support QoS. As mobile ad-hoc networks are constrained by resources like energy and bandwidth, it is imperative for them to cooperate in a reasonably selfish manner. Thus, in this paper we propose cooperation with a moderately punishing algorithm based on game theory. The proposed algorithm in synchronization with SAMPLE yields better results on IEEE 802.11e

    Dissection of Mobility Model Routing Protocols in MANET on QoS Criterion

    Get PDF
    Essential difficulties in Mobile Ad Hoc Networks (MANET) are routing selection and Quality of Service(QoS) support. Several different approaches have been described in the literature, and a number of performance simulations have been produced, in an attempt to tackle this challenging problem. In this study, we take a close look at the relative merits of several popular routing protocols. In this research, we looked into how changing QoS parameters in tandem with routing protocol choices affected network throughput. Typical measures for measuring network efficiency include average throughput, packet delivery ratio (PDR), average delay, and power usage. NS-3 is used to run the simulations

    MARIAN: A hybrid, metric-driven, agent-based routing protocol for multihop ad-hoc networks

    Get PDF
    Recent advances in technology provided the ground for highly dynamic, mobile, infrastructure-less networks, namely, ad-hoc networks. Despite their enormous benefits, the full potential cannot be reached unless certain issues are resolved. These mainly involve routing, as the lack of an infrastructure imposes a heavy burden on mobile devices that must maintain location information and route data packets in a multi-hop fashion. Specifically, typical adhoc routing devices, such as Personal Digital Assistants (PDAs), are limited in respect to the available throughput, life-time, and performance, that these may provide, as routing elements. Thus, there is a need for metric-driven ad-hoc routing, that is, devices should be utilised for routing according to their fitness, as different device types significantly vary in terms of routing fitness. In addition, a concrete agent-based approach can provide a set of advantages over a non-agent-based one, which includes: better design practice; and automatic reconfigurability.This research work aims to investigate the applicability of stationary and mobile agent technology in multi-hop ad-hoc routing. Specifically, this research proposes a novel hybrid, metric-driven, agent-based routing protocol for multi-hop ad-hoc networks that will enhance current routing schemes. The novelties that are expected to be achieved include: maximum network performance, increased scalability, dynamic adaptation, Quality of Service (QoS), energy conservation, reconfigurability, and security. The underlying idea is based on the fact that stationary and mobile agents can be ideal candidates for such dynamic environments due to their advanced characteristics, and thus offer state of the art support in terms of organising the otherwise disoriented network into an efficient and flexible hierarchical structure, classifying the routing fitness of participating devices, and therefore allow intelligent routing decisions to be taken on that basis

    MARIAN: A hybrid, metric-driven, agent-based routing protocol for multihop ad-hoc networks

    Get PDF
    Recent advances in technology provided the ground for highly dynamic, mobile, infrastructure-less networks, namely, ad-hoc networks. Despite their enormous benefits, the full potential cannot be reached unless certain issues are resolved. These mainly involve routing, as the lack of an infrastructure imposes a heavy burden on mobile devices that must maintain location information and route data packets in a multi-hop fashion. Specifically, typical adhoc routing devices, such as Personal Digital Assistants (PDAs), are limited in respect to the available throughput, life-time, and performance, that these may provide, as routing elements. Thus, there is a need for metric-driven ad-hoc routing, that is, devices should be utilised for routing according to their fitness, as different device types significantly vary in terms of routing fitness. In addition, a concrete agent-based approach can provide a set of advantages over a non-agent-based one, which includes: better design practice; and automatic reconfigurability.This research work aims to investigate the applicability of stationary and mobile agent technology in multi-hop ad-hoc routing. Specifically, this research proposes a novel hybrid, metric-driven, agent-based routing protocol for multi-hop ad-hoc networks that will enhance current routing schemes. The novelties that are expected to be achieved include: maximum network performance, increased scalability, dynamic adaptation, Quality of Service (QoS), energy conservation, reconfigurability, and security. The underlying idea is based on the fact that stationary and mobile agents can be ideal candidates for such dynamic environments due to their advanced characteristics, and thus offer state of the art support in terms of organising the otherwise disoriented network into an efficient and flexible hierarchical structure, classifying the routing fitness of participating devices, and therefore allow intelligent routing decisions to be taken on that basis
    corecore