387 research outputs found

    Optical Technologies and Control Methods for Scalable Data Centre Networks

    Get PDF
    Attributing to the increasing adoption of cloud services, video services and associated machine learning applications, the traffic demand inside data centers is increasing exponentially, which necessitates an innovated networking infrastructure with high scalability and cost-efficiency. As a promising candidate to provide high capacity, low latency, cost-effective and scalable interconnections, optical technologies have been introduced to data center networks (DCNs) for approximately a decade. To further improve the DCN performance to meet the increasing traffic demand by using photonic technologies, two current trends are a)increasing the bandwidth density of the transmission links and b) maximizing IT and network resources utilization through disaggregated topologies and architectures. Therefore, this PhD thesis focuses on introducing and applying advanced and efficient technologies in these two fields to DCNs to improve their performance. On the one hand, at the link level, since the traditional single-mode fiber (SMF) solutions based on wavelength division multiplexing (WDM) over C+L band may fall short in satisfying the capacity, front panel density, power consumption, and cost requirements of high-performance DCNs, a space division multiplexing (SDM) based DCN using homogeneous multi-core fibers (MCFs) is proposed.With the exploited bi-directional model and proposed spectrum allocation algorithms, the proposed DCN shows great benefits over the SMF solution in terms of network capacity and spatial efficiency. In the meanwhile, it is found that the inter-core crosstalk (IC-XT) between the adjacent cores inside the MCF is dynamic rather than static, therefore, the behaviour of the IC-XT is experimentally investigated under different transmission conditions. On the other hand, an optically disaggregated DCN is developed and to ensure the performance of it, different architectures, topologies, resource routing and allocation algorithms are proposed and compared. Compared to the traditional server-based DCN, the resource utilization, scalability and the cost-efficiency are significantly improved

    Recent Advances in Wavelength-Division-Multiplexing Plastic Optical Fiber Technologies

    Get PDF
    This work has been supported by the Spanish Ministry of EconomĂ­a y Competitividad under the grant TEC2012-37983-C03-02

    Cost and energy efficient operation of converged, reconfigurable optical wireless networks

    Get PDF
    This paper presents a converged fibre-to-the-home (FTTH) based access network architecture featuring wireless services. In order to fulfill the bandwidth demands from end users, a dynamic architecture is proposed with co-existence of LTE, WiMax and UWB technologies. Hybrid wavelength division multiplexing (WDM) and a time division multiplexing (TDM) based optical access network offer reconfigurable provision. This enhances the ability to allocate different wavelengths to different optical networking units (ONUs) on demand. In addition, two different channel routing modules (CRMs) are introduced in order to address the cost effectiveness and energy efficiency issues of the proposed network. Take-up rate adaptive-mode operation and traffic-adaptive power management are utilized to optimize the benefits of low investment cost with energy efficiency. Up to 26% power consumption reduction is achieved at the time of minimum traffic conditions while 10% consumption is achieved at the time of maximum traffic conditions. Besides, 23% energy saving can be achieved compared to conventional systems in fully operated stage

    Optical Networks and Interconnects

    Full text link
    The rapid evolution of communication technologies such as 5G and beyond, rely on optical networks to support the challenging and ambitious requirements that include both capacity and reliability. This chapter begins by giving an overview of the evolution of optical access networks, focusing on Passive Optical Networks (PONs). The development of the different PON standards and requirements aiming at longer reach, higher client count and delivered bandwidth are presented. PON virtualization is also introduced as the flexibility enabler. Triggered by the increase of bandwidth supported by access and aggregation network segments, core networks have also evolved, as presented in the second part of the chapter. Scaling the physical infrastructure requires high investment and hence, operators are considering alternatives to optimize the use of the existing capacity. This chapter introduces different planning problems such as Routing and Spectrum Assignment problems, placement problems for regenerators and wavelength converters, and how to offer resilience to different failures. An overview of control and management is also provided. Moreover, motivated by the increasing importance of data storage and data processing, this chapter also addresses different aspects of optical data center interconnects. Data centers have become critical infrastructure to operate any service. They are also forced to take advantage of optical technology in order to keep up with the growing capacity demand and power consumption. This chapter gives an overview of different optical data center network architectures as well as some expected directions to improve the resource utilization and increase the network capacity

    Radio beam steering in indoor fibre-wireless networks

    Get PDF
    • …
    corecore