11,573 research outputs found

    Analysis of adaptive algorithms for an integrated communication network

    Get PDF
    Techniques were examined that trade communication bandwidth for decreased transmission delays. When the network is lightly used, these schemes attempt to use additional network resources to decrease communication delays. As the network utilization rises, the schemes degrade gracefully, still providing service but with minimal use of the network. Because the schemes use a combination of circuit and packet switching, they should respond to variations in the types and amounts of network traffic. Also, a combination of circuit and packet switching to support the widely varying traffic demands imposed on an integrated network was investigated. The packet switched component is best suited to bursty traffic where some delays in delivery are acceptable. The circuit switched component is reserved for traffic that must meet real time constraints. Selected packet routing algorithms that might be used in an integrated network were simulated. An integrated traffic places widely varying workload demands on a network. Adaptive algorithms were identified, ones that respond to both the transient and evolutionary changes that arise in integrated networks. A new algorithm was developed, hybrid weighted routing, that adapts to workload changes

    Fine Grained Component Engineering of Adaptive Overlays: Experiences and Perspectives

    Get PDF
    Recent years have seen significant research being carried out into peer-to-peer (P2P) systems. This work has focused on the styles and applications of P2P computing, from grid computation to content distribution; however, little investigation has been performed into how these systems are built. Component based engineering is an approach that has seen successful deployment in the field of middleware development; functionality is encapsulated in ‘building blocks’ that can be dynamically plugged together to form complete systems. This allows efficient, flexible and adaptable systems to be built with lower overhead and development complexity. This paper presents an investigation into the potential of using component based engineering in the design and construction of peer-to-peer overlays. It is highlighted that the quality of these properties is dictated by the component architecture used to implement the system. Three reusable decomposition architectures are designed and evaluated using Chord and Pastry case studies. These demonstrate that significant improvements can be made over traditional design approaches resulting in much more reusable, (re)configurable and extensible systems

    Path Planning for Cooperative Routing of Air-Ground Vehicles

    Full text link
    We consider a cooperative vehicle routing problem for surveillance and reconnaissance missions with communication constraints between the vehicles. We propose a framework which involves a ground vehicle and an aerial vehicle; the vehicles travel cooperatively satisfying the communication limits, and visit a set of targets. We present a mixed integer linear programming (MILP) formulation and develop a branch-and-cut algorithm to solve the path planning problem for the ground and air vehicles. The effectiveness of the proposed approach is corroborated through extensive computational experiments on several randomly generated instances

    Throughput Optimal On-Line Algorithms for Advanced Resource Reservation in Ultra High-Speed Networks

    Full text link
    Advanced channel reservation is emerging as an important feature of ultra high-speed networks requiring the transfer of large files. Applications include scientific data transfers and database backup. In this paper, we present two new, on-line algorithms for advanced reservation, called BatchAll and BatchLim, that are guaranteed to achieve optimal throughput performance, based on multi-commodity flow arguments. Both algorithms are shown to have polynomial-time complexity and provable bounds on the maximum delay for 1+epsilon bandwidth augmented networks. The BatchLim algorithm returns the completion time of a connection immediately as a request is placed, but at the expense of a slightly looser competitive ratio than that of BatchAll. We also present a simple approach that limits the number of parallel paths used by the algorithms while provably bounding the maximum reduction factor in the transmission throughput. We show that, although the number of different paths can be exponentially large, the actual number of paths needed to approximate the flow is quite small and proportional to the number of edges in the network. Simulations for a number of topologies show that, in practice, 3 to 5 parallel paths are sufficient to achieve close to optimal performance. The performance of the competitive algorithms are also compared to a greedy benchmark, both through analysis and simulation.Comment: 9 pages, 8 figure

    Optimizing IGP Link Costs for Improving IP-level Resilience

    Get PDF
    Recently, major vendors have introduced new router platforms to the market that support fast IP-level failure pro- tection out of the box. The implementations are based on the IP Fast ReRoute–Loop Free Alternates (LFA) standard. LFA is simple, unobtrusive, and easily deployable. This simplicity, however, comes at a severe price, in that LFA usually cannot protect all possible failure scenarios. In this paper, we give new graph theoretical tools for analyzing LFA failure case coverage and we seek ways for improvement. In particular, we investigate how to optimize IGP link costs to maximize the number of protected failure scenarios, we show that this problem is NP- complete even in a very restricted formulation, and we give exact and approximate algorithms to solve it. Our simulation studies show that a deliberate selection of IGP costs can bring many networks close to complete LFA-based protection

    Enabling Correct Interest Forwarding and Retransmissions in a Content Centric Network

    Full text link
    We show that the mechanisms used in the name data networking (NDN) and the original content centric networking (CCN) architectures may not detect Interest loops, even if the network in which they operate is static and no faults occur. Furthermore, we show that no correct Interest forwarding strategy can be defined that allows Interest aggregation and attempts to detect Interest looping by identifying Interests uniquely. We introduce SIFAH (Strategy for Interest Forwarding and Aggregation with Hop-Counts), the first Interest forwarding strategy shown to be correct under any operational conditions of a content centric network. SIFAH operates by having forwarding information bases (FIBs) store the next hops and number of hops to named content, and by having each Interest state the name of the requested content and the hop count from the router forwarding an Interest to the content. We present the results of simulation experiments using the ndnSIM simulator comparing CCN and NDN with SIFAH. The results of these experiments illustrate the negative impact of undetected Interest looping when Interests are aggregated in CCN and NDN, and the performance advantages of using SIFAH
    • 

    corecore