287 research outputs found

    Active Topology Inference using Network Coding

    Get PDF
    Our goal is to infer the topology of a network when (i) we can send probes between sources and receivers at the edge of the network and (ii) intermediate nodes can perform simple network coding operations, i.e., additions. Our key intuition is that network coding introduces topology-dependent correlation in the observations at the receivers, which can be exploited to infer the topology. For undirected tree topologies, we design hierarchical clustering algorithms, building on our prior work. For directed acyclic graphs (DAGs), first we decompose the topology into a number of two-source, two-receiver (2-by-2) subnetwork components and then we merge these components to reconstruct the topology. Our approach for DAGs builds on prior work on tomography, and improves upon it by employing network coding to accurately distinguish among all different 2-by-2 components. We evaluate our algorithms through simulation of a number of realistic topologies and compare them to active tomographic techniques without network coding. We also make connections between our approach and alternatives, including passive inference, traceroute, and packet marking

    In-band network telemetry in industrial wireless sensor networks

    Get PDF
    With the emergence of the Internet of Things (IoT) and Industry 4.0 concepts, industrial applications are going through a tremendous change that is imposing increasingly diverse and demanding network dynamics and requirements with a wider and more fine-grained scale. Therefore, there is a growing need for more flexible and reconfigurable industrial networking solutions complemented with powerful monitoring and management functionalities. In this sense, this paper presents a novel efficient network monitoring and telemetry solution for Industrial Wireless Sensor Networks mainly focusing on the 6TiSCH Network stack, a complete protocol stack for ultra-reliable ultra-low-power wireless mesh networks. The proposed monitoring solution creates a flexible and powerful in-band network telemetry design with minimized resource consumption and communication overhead while supporting a wide range of monitoring operations and strategies for dealing with various network scenarios and use cases. Besides, the technical capabilities and characteristics of the proposed solution are evaluated via a real-life implementation, practical and theoretical analysis. These experiments demonstrate that in-band telemetry can provide ultra-efficient network monitoring operations without any effect on the network behavior and performance, validating its suitability for Industrial Wireless Sensor Networks

    Link Scanner: Faulty link detection for wireless sensor networks

    Full text link

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Hardware Architectures for Low-power In-Situ Monitoring of Wireless Embedded Systems

    Get PDF
    As wireless embedded systems transition from lab-scale research prototypes to large-scale commercial deployments, providing reliable and dependable system operation becomes absolutely crucial to ensure successful adoption. However, the untethered nature of wireless embedded systems severely limits the ability to access, debug, and control device operation after deployment—post-deployment or in-situ visibility. It is intuitive that the more information we have about a system’s operation after deployment, the better/faster we can respond upon the detection of anomalous behavior. Therefore, post-deployment visibility is a foundation upon which other runtime reliability techniques can be built. However, visibility into system operation diminishes significantly once the devices are remotely deployed, and we refer to this problem as a lack of post-deployment visibility

    Active topology inference using network coding

    Get PDF
    Our goal, in this paper, is to infer the topology of a network when (i) we can send probes between sources and receivers at the edge of the network and (ii) intermediate nodes can perform simple network coding operations, i.e., additions. Our key intuition is that network coding introduces topology-dependent correlation in the observations at the receivers, which can be exploited to infer the topology. For undirected tree topologies, we design hierarchical clustering algorithms, building on our prior work in [24]. For directed acyclic graphs (DAGs), first we decompose the topology into a number of two source, two receiver (2-by-2) subnetwork components and then we merge these components to reconstruct the topology. Our approach for DAGs builds on prior work on tomography [36], and improves upon it by employing network coding to accurately distinguish among all different 2-by-2 components. We evaluate our algorithms through simulation of a number of realistic topologies and compare them to active tomographic techniques without network coding. We also make connections between our approach and other alternatives, including passive inference, traceroute, and packet marking

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms
    corecore