112 research outputs found

    Software defined networking for radio telescopes: a case study on the applicability of SDN for MeerKAT

    Get PDF
    Scientific instruments like radio telescopes depend on high-performance networks for internal data exchange. The high bandwidth data exchange between the components of a radio telescope makes use of multicast networking. Complex multicast networks are hard to maintain and grow, and specific installations require modified network switches. This study evaluates Software Defined Networking (SDN) for use in the MeerKAT radio telescope to alleviate the management complexity and allow for a vendor-neutral implementation. The purpose of this dissertation is to verify that an SDN multicast network can produce suitable paths for data flow through the network and to see if such an implementation is easier to maintain and grow. There is little literature regarding SDN for radio telescope networks; however, there is considerable work where different aspects of SDN are discussed and demonstrated for video streaming. SDN with multicast for video streaming, although simpler, forms the background research. Considerable work was put into understanding and documenting the different aspects of a radio telescope affecting the data network. The telescope network controller generates the OpenFlow rules required by the SDN controller and is a new concept introduced in this work. The telescope network controller is fitted with two placement algorithms to demonstrate its flexibility. Both algorithms are suitable for the expected workload, but they produce very different traffic patterns. The two algorithms are not compared to one another, they were created to demonstrate the ease of adding domain specific knowledge to an SDN. The telescope network controller makes it easy to introduce and use new flow placement algorithms, thus making traffic engineering feasible for the radio telescope. Complex multicast networks are easier to maintain and grow with SDN. SDN allows customised packet forwarding rules typically unattainable with standard routing and other standard network protocols and implementations. A radio telescope with a software-defined data network is resilient, easier to maintain, vendor-neutral, and possesses advanced traffic engineering mechanisms

    Video Streaming in Evolving Networks under Fuzzy Logic Control

    Get PDF

    Enhancing the Kademlia P2P Network

    Get PDF
    Distributed Hash Tables (DHT´s) are sophisticated Peer-to-Peer (P2P) overlay networks. Such overlays have the ability to retrieve stored data in a limited time, usually in a logarithmic number of steps. However in contrast to the well-known Gnutella and FastTrack networks, these can only locate data quickly, if the key associated with the data requested is accurately specified. In this article we analyze the reliability of the Kademlia network, and describe our model, which can be used to determine its system-wide configuration parameters. We also present a novel algorithm that implements broadcast messages in Kademlia. The developed algorithm ensures reliable delivery of broadcast messages in an error prone environment. Broadcast messaging is an elementary service in an overlay network. Using broadcast messages, queries of any key type or part of key, can be realized

    Implementation of Multicast Routing Protocol on MANET

    Get PDF
    Underwater wireless sensor networks (UWSNs) have been showed as a promising technology to monitor and explore the oceans in lieu of traditional undersea wireline instruments. Nevertheless, the data gathering of UWSNs is still severely limited because of the acoustic channel communication characteristics. One way to improve the data collection in UWSNs is through the design of routing protocols considering the unique characteristics of the underwater acoustic communication and the highly dynamic network topology. In this paper, we propose the GEDAR routing protocol for UWSNs. GEDAR is an anycast, geographic and opportunistic routing protocol that routes data packets from sensor nodes to multiple sonobuoys (sinks) at the sea�s surface. When the node is in a communication void region, GEDAR switches to the recovery mode procedure which is based on topology control through the depth adjustment of the void nodes, instead of the traditional approaches using control messages to discover and maintain routing paths along void region
    • …
    corecore