23,230 research outputs found

    Design and Development of Network Reliability based Secure Multicast Routing Protocol for MANET

    Get PDF
    In Mobile Ad hoc network (MANET), link quality and stability of links as well as nodes play a major role. In ad hoc network, links are often changing which could affect the node mobility and integrity of data packets. In this research work, Network Reliability based Secure Multicast Routing Protocol (NRSMRP) is proposed to achieve network reliability by means of creation of reliable multicast tree. This multicast tree is constructed based on link quality and reliability trust metric. In first phase, node categorization and reliability metric calculation are implemented with the help of link quality. In second phase, reliable multicast tree is formed based on parent node and child node. Parent node must have god capacity and signal strength to communicate with child node. In last phase, authentication based multicast routes are established based on the calculation of direct reputation of mobile nodes. From the results, proposed protocol achieves better performance than existing schemes

    Light Load Path Selection Techniques for Control Congestion in MANET (ENBA)

    Get PDF
    The nodes have limited bandwidth and processing capability. The routing protocols cannot handle the congestion due to heavy load in mobile ad hoc networks. Several routes are established in the network, and some intermediate nodes are common. The dynamic behaviour of the network creates problems for strong link establishment. The routing protocol establishes the connection between the sender and receiver. The efficient routing approach uses the concept of load balancing to reduce packet loss in a network. The heavy load on the network affects the node’s buffer capacity and link capacity. The research proposed the Effective Network Behavior Analyze (ENBA) for route sections to control congestion in MANET. This paper’s effort is driven by the idea of considering several aspects of the routing design of Mobile Ad hoc Networks (MANETs) in a unified manner. ENBA is a routing strategy that uses the shortest path for routing and balances the load by managing incoming and outgoing packets on links and nodes. In this routing scheme, the shortest path measures the buffer capacity of the nodes with higher TTL values selected for sending the data packets in the network. The link capacity is based on the flow of packets in the network. Queue optimisation is a continuous optimisation in which we count the number of packets incoming and decide the link reliability in a dynamic network. The performance of ENBA is compared with the Ad hoc On-demand Multipath Distance Vector -Modified (AOMDV-M) routing protocol. The ENDA strategy outperforms the competition in terms of performance over a shorter period. In the proposed technique, performance matrices like PDR, overhead, and delay provide better results than the previous AOMDV-M routing approach

    Performance Improvement of AODV in Wireless Networks using Reinforcement Learning Algorithms

    Get PDF
    This paper investigates the application of reinforcement learning (RL) techniques to enhance the performance of the Ad hoc On-Demand Distance Vector (AODV) routing protocol in mobile ad hoc networks (MANETs). MANETs are self-configuring networks consisting of mobile nodes that communicate without the need for a centralized infrastructure. AODV is a widely used routing protocol in MANETs due to its reactive nature, which reduces overhead and conserves energy. This research explores three popular Reinforcement Learning algorithms: SARSA, Q-Learning and Deep Q-Network (DQN) to optimize the AODV protocol's routing decisions. The RL agents are trained to learn the optimal routing paths by interacting with the network environment, considering factors such as link quality, node mobility, and traffic load. The experiments are conducted using network simulators to evaluate the performance improvements achieved by the proposed RL-based enhancements. The results demonstrate significant enhancements in various performance metrics, including reduced end-to-end delay, increased packet delivery ratio, and improved throughput. Furthermore, the RL-based approaches exhibit adaptability to dynamic network conditions, ensuring efficient routing even in highly mobile and unpredictable MANET scenarios. This study offers valuable insights into harnessing RL techniques for improving the efficiency and reliability of routing protocols in mobile ad hoc networks

    Reliable data delivery in low energy ad hoc sensor networks

    Get PDF
    Reliable delivery of data is a classical design goal for reliability-oriented collection routing protocols for ad hoc wireless sensor networks (WSNs). Guaranteed packet delivery performance can be ensured by careful selection of error free links, quick recovery from packet losses, and avoidance of overloaded relay sensor nodes. Due to limited resources of individual senor nodes, there is usually a trade-off between energy spending for packets transmissions and the appropriate level of reliability. Since link failures and packet losses are unavoidable, sensor networks may tolerate a certain level of reliability without significantly affecting packets delivery performance and data aggregation accuracy in favor of efficient energy consumption. However a certain degree of reliability is needed, especially when hop count increases between source sensor nodes and the base station as a single lost packet may result in loss of a large amount of aggregated data along longer hops. An effective solution is to jointly make a trade-off between energy, reliability, cost, and agility while improving packet delivery, maintaining low packet error ratio, minimizing unnecessary packets transmissions, and adaptively reducing control traffic in favor of high success reception ratios of representative data packets. Based on this approach, the proposed routing protocol can achieve moderate energy consumption and high packet delivery ratio even with high link failure rates. The proposed routing protocol was experimentally investigated on a testbed of Crossbow's TelosB motes and proven to be more robust and energy efficient than the current implementation of TinyOS2.x MultihopLQI

    Improving the Reliability of Optimised Link State Routing Protocol in Smart Grid’s Neighbour Area Network

    Get PDF
    A reliable and resilient communication infrastructure that can cope with variable application traffic types and delay objectives is one of the prerequisites that differentiates a Smart Grid from the conventional electrical grid. However, the legacy communication infrastructure in the existing electrical grid is insufficient, if not incapable of satisfying the diverse communication requirements of the Smart Grid. The IEEE 802.11 ad hoc Wireless Mesh Network (WMN) is re-emerging as one of the communication networks that can significantly extend the reach of Smart Grid to backend devices through the Advanced Metering Infrastructure (AMI). However, the unique characteristics of AMI application traffic in the Smart Grid poses some interesting challenges to conventional communication networks including the ad hoc WMN. Hence, there is a need to modify the conventional ad hoc WMN, to address the uncertainties that may exist in its applicability in a Smart Grid environment. This research carries out an in-depth study of the communication of Smart Grid application traffic types over ad hoc WMN deployed in the Neighbour Area Network (NAN). It begins by conducting a critical review of the application characteristics and traffic requirements of several Smart Grid applications and highlighting some key challenges. Based on the reviews, and assuming that the application traffic types use the internet protocol (IP) as a transport protocol, a number of Smart Grid application traffic profiles were developed. Through experimental and simulation studies, a performance evaluation of an ad hoc WMN using the Optimised Link State Routing (OLSR) routing protocol was carried out. This highlighted some capacity and reliability issues that routing AMI application traffic may face within a conventional ad hoc WMN in a Smart Grid NAN. Given the fact that conventional routing solutions do not consider the traffic requirements when making routing decisions, another key observation is the inability of link metrics in routing protocols to select good quality links across multiple hops to a destination and also provide Quality of Service (QoS) support for target application traffic. As with most routing protocols, OLSR protocol uses a single routing metric acquired at the network layer, which may not be able to accommodate different QoS requirements for application traffic in Smart Grid. To address these problems, a novel multiple link metrics approach to improve the reliability performance of routing in ad hoc WMN when deployed for Smart Grid is presented. It is based on the OLSR protocol and explores the possibility of applying QoS routing for application traffic types in NAN based ad hoc WMN. Though routing in multiple metrics has been identified as a complex problem, Multi-Criteria Decision Making (MCDM) techniques such as the Analytical Hierarchy Process (AHP) and pruning have been used to perform such routing on wired and wireless multimedia applications. The proposed multiple metrics OLSR with AHP is used to offer the best available route, based on a number of considered metric parameters. To accommodate the variable application traffic requirements, a study that allows application traffic to use the most appropriate routing metric is presented. The multiple metrics development is then evaluated in Network Simulator 2.34; the simulation results demonstrate that it outperforms existing routing methods that are based on single metrics in OLSR. It also shows that it can be used to improve the reliability of application traffic types, thereby overcoming some weaknesses of existing single metric routing across multiple hops in NAN. The IEEE 802.11g was used to compare and analyse the performance of OLSR and the IEEE 802.11b was used to implement the multiple metrics framework which demonstrate a better performance than the single metric. However, the multiple metrics can also be applied for routing on different IEEE wireless standards, as well as other communication technologies such as Power Line Communication (PLC) when deployed in Smart Grid NAN

    RESP: Relay suitability-based routing protocol for video streaming in vehicular Ad Hoc Networks

    Get PDF
    Video streaming in Vehicular Ad Hoc Networks (VANETs) is a fundamental requirement for a roadside emergency and smart video surveillance services. However, vehicles moving at a high speed usually create unstable wireless links that drop video frames qualities. In a high-density network, network collision between vehicles is another obstacle in improving the scalability of unicast routing protocols. In this paper, the RElay Suitability-based Routing Protocol (RESP) which makes a routing decision based on the link stability measurement was proposed for an uninterrupted video streaming. The RESP estimates the geographic advancement and link stability of a vehicle towards its destination only in the small region. To ensure the reliability while extending the scalability of routing, the relay suitability metric integrates the packet delay, collision dropping, link stability, and the Expected Transmission Count (ETX) in the weighted division algorithm, and selects a high-quality forwarding node for video streaming. The experimental results demonstrated the proposed RESP outperformed the link Lifetime-aware Beacon-less Routing Protocol (LBRP) and other traditional geographical streaming protocols in providing a high packet delivery ratio and packet delay with various network densities, and proved the scalability support of RESP for video streaming

    Reliability Analysis of Link Stability in Secured Routing Protocols for MANETs

    Get PDF
    The prime characteristics of Mobile Ad Hoc Network (MANET) are infrastructure free, absence of centralized authority and dynamic nature of nodes which are more vulnerable to security attacks. Reliability and security are prime issues to protect information and nodes in a network during communication which has received more research interest in designing a dynamic secured routing scheme. QoS is set of service requirement that needs to be satisfied by the network during the data transmission in the network. From the perception of QoS best effort protocols ensure optimum network operation in a unpredictable mobile environment. The multimedia applications are intolerable towards delay and reliability which are the features of mobile network, hence the potentials of MANET were not utilized in multimedia applications. These issues of delay and reliability of packet transmission in MANET are contributed by stability of the communication link even during the mobility of the nodes Its a necessity to analyze the performance of various secured routing protocols based on the stability of the communication link in case of mobility of nodes during data transfer. This paper is focused on a comparative study of various secured reactive routing protocols in MANET signifying the connectivity stability during the mobility of the nodes
    • …
    corecore