15,811 research outputs found

    Prevention of cyberattacks in WSN and packet drop by CI framework and information processing protocol using AI and Big Data

    Full text link
    As the reliance on wireless sensor networks (WSNs) rises in numerous sectors, cyberattack prevention and data transmission integrity become essential problems. This study provides a complete framework to handle these difficulties by integrating a cognitive intelligence (CI) framework, an information processing protocol, and sophisticated artificial intelligence (AI) and big data analytics approaches. The CI architecture is intended to improve WSN security by dynamically reacting to an evolving threat scenario. It employs artificial intelligence algorithms to continuously monitor and analyze network behavior, identifying and mitigating any intrusions in real time. Anomaly detection algorithms are also included in the framework to identify packet drop instances caused by attacks or network congestion. To support the CI architecture, an information processing protocol focusing on efficient and secure data transfer within the WSN is introduced. To protect data integrity and prevent unwanted access, this protocol includes encryption and authentication techniques. Furthermore, it enhances the routing process with the use of AI and big data approaches, providing reliable and timely packet delivery. Extensive simulations and tests are carried out to assess the efficiency of the suggested framework. The findings show that it is capable of detecting and preventing several forms of assaults, including as denial-of-service (DoS) attacks, node compromise, and data tampering. Furthermore, the framework is highly resilient to packet drop occurrences, which improves the WSN's overall reliability and performanc

    A Low-Delay MAC for IoT Applications: Decentralized Optimal Scheduling of Queues without Explicit State Information Sharing

    Full text link
    We consider a system of several collocated nodes sharing a time slotted wireless channel, and seek a MAC (medium access control) that (i) provides low mean delay, (ii) has distributed control (i.e., there is no central scheduler), and (iii) does not require explicit exchange of state information or control signals. The design of such MAC protocols must keep in mind the need for contention access at light traffic, and scheduled access in heavy traffic, leading to the long-standing interest in hybrid, adaptive MACs. Working in the discrete time setting, for the distributed MAC design, we consider a practical information structure where each node has local information and some common information obtained from overhearing. In this setting, "ZMAC" is an existing protocol that is hybrid and adaptive. We approach the problem via two steps (1) We show that it is sufficient for the policy to be "greedy" and "exhaustive". Limiting the policy to this class reduces the problem to obtaining a queue switching policy at queue emptiness instants. (2) Formulating the delay optimal scheduling as a POMDP (partially observed Markov decision process), we show that the optimal switching rule is Stochastic Largest Queue (SLQ). Using this theory as the basis, we then develop a practical distributed scheduler, QZMAC, which is also tunable. We implement QZMAC on standard off-the-shelf TelosB motes and also use simulations to compare QZMAC with the full-knowledge centralized scheduler, and with ZMAC. We use our implementation to study the impact of false detection while overhearing the common information, and the efficiency of QZMAC. Our simulation results show that the mean delay with QZMAC is close that of the full-knowledge centralized scheduler.Comment: 28 pages, 19 figure

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    A fuzzy set theory-based fast fault diagnosis approach for rotators of induction motors

    Get PDF
    Induction motors have been widely used in industry, agriculture, transportation, national defense engineering, etc. Defects of the motors will not only cause the abnormal operation of production equipment but also cause the motor to run in a state of low energy efficiency before evolving into a fault shutdown. The former may lead to the suspension of the production process, while the latter may lead to additional energy loss. This paper studies a fuzzy rule-based expert system for this purpose and focuses on the analysis of many knowledge representation methods and reasoning techniques. The rotator fault of induction motors is analyzed and diagnosed by using this knowledge, and the diagnosis result is displayed. The simulation model can effectively simulate the broken rotator fault by changing the resistance value of the equivalent rotor winding. And the influence of the broken rotor bar fault on the motors is described, which provides a basis for the fault characteristics analysis. The simulation results show that the proposed method can realize fast fault diagnosis for rotators of induction motors

    Fast and Low-Overhead Time Synchronization for Industrial Wireless Sensor Networks with Mesh-Star Architecture

    No full text
    Low-overhead, robust, and fast-convergent time synchronization is important for resource-constrained large-scale industrial wireless sensor networks (IWSNs). The consensus-based time synchronization method with strong robustness has been paid more attention in wireless sensor networks. However, high communication overhead and slow convergence speed are inherent drawbacks for consensus time synchronization due to inefficient frequent iterations. In this paper, a novel time synchronization algorithm for IWSNs with a mesh–star architecture is proposed, namely, fast and low-overhead time synchronization (FLTS). The proposed FLTS divides the synchronization phase into two layers: mesh layer and star layer. A few resourceful routing nodes in the upper mesh layer undertake the low-efficiency average iteration, and the massive low-power sensing nodes in the star layer synchronize with the mesh layer in a passive monitoring manner. Therefore, a faster convergence and lower communication overhead time synchronization is achieved. The theoretical analysis and simulation results demonstrate the efficiency of the proposed algorithm in comparison with the state-of-the-art algorithms, i.e., ATS, GTSP, and CCTS

    Secure Routing Protocol To Mitigate Attacks By Using Blockchain Technology In Manet

    Full text link
    MANET is a collection of mobile nodes that communicate through wireless networks as they move from one point to another. MANET is an infrastructure-less network with a changeable topology; as a result, it is very susceptible to attacks. MANET attack prevention represents a serious difficulty. Malicious network nodes are the source of network-based attacks. In a MANET, attacks can take various forms, and each one alters the network's operation in its unique way. In general, attacks can be separated into two categories: those that target the data traffic on a network and those that target the control traffic. This article explains the many sorts of assaults, their impact on MANET, and the MANET-based defence measures that are currently in place. The suggested SRA that employs blockchain technology (SRABC) protects MANET from attacks and authenticates nodes. The secure routing algorithm (SRA) proposed by blockchain technology safeguards control and data flow against threats. This is achieved by generating a Hash Function for every transaction. We will begin by discussing the security of the MANET. This article's second section explores the role of blockchain in MANET security. In the third section, the SRA is described in connection with blockchain. In the fourth phase, PDR and Throughput are utilised to conduct an SRA review using Blockchain employing PDR and Throughput. The results suggest that the proposed technique enhances MANET security while concurrently decreasing delay. The performance of the proposed technique is analysed and compared to the routing protocols Q-AODV and DSR.Comment: https://aircconline.com/ijcnc/V15N2/15223cnc07.pd

    PrimeTime: A Finite-Time Consensus Protocol for Open Networks

    Full text link
    In distributed problems where consensus between agents is required but average consensus is not desired, it can be necessary for each agent to know not only the data of each other agent in the network, but also the origin of each piece of data before consensus can be reached. However, transmitting large tables of data with IDs can cause the size of an agent's message to increase dramatically, while truncating down to fewer pieces of data to keep the message size small can lead to problems with the speed of achieving consensus. Also, many existing consensus protocols are not robust against agents leaving and entering the network. We introduce PrimeTime, a novel communication protocol that exploits the properties of prime numbers to quickly and efficiently share small integer data across an open network. For sufficiently small networks or small integer data, we show that messages formed by PrimeTime require fewer bits than messages formed by simply tabularizing the data and IDs to be transmitted

    Multilink and AUV-Assisted Energy-Efficient Underwater Emergency Communications

    Full text link
    Recent development in wireless communications has provided many reliable solutions to emergency response issues, especially in scenarios with dysfunctional or congested base stations. Prior studies on underwater emergency communications, however, remain under-studied, which poses a need for combining the merits of different underwater communication links (UCLs) and the manipulability of unmanned vehicles. To realize energy-efficient underwater emergency communications, we develop a novel underwater emergency communication network (UECN) assisted by multiple links, including underwater light, acoustic, and radio frequency links, and autonomous underwater vehicles (AUVs) for collecting and transmitting underwater emergency data. First, we determine the optimal emergency response mode for an underwater sensor node (USN) using greedy search and reinforcement learning (RL), so that isolated USNs (I-USNs) can be identified. Second, according to the distribution of I-USNs, we dispatch AUVs to assist I-USNs in data transmission, i.e., jointly optimizing the locations and controls of AUVs to minimize the time for data collection and underwater movement. Finally, an adaptive clustering-based multi-objective evolutionary algorithm is proposed to jointly optimize the number of AUVs and the transmit power of I-USNs, subject to a given set of constraints on transmit power, signal-to-interference-plus-noise ratios (SINRs), outage probabilities, and energy, which achieves the best tradeoff between the maximum emergency response time (ERT) and the total energy consumption (EC). Simulation results indicate that our proposed approach outperforms benchmark schemes in terms of energy efficiency (EE), contributing to underwater emergency communications.Comment: 15 page

    Security and Privacy Problems in Voice Assistant Applications: A Survey

    Full text link
    Voice assistant applications have become omniscient nowadays. Two models that provide the two most important functions for real-life applications (i.e., Google Home, Amazon Alexa, Siri, etc.) are Automatic Speech Recognition (ASR) models and Speaker Identification (SI) models. According to recent studies, security and privacy threats have also emerged with the rapid development of the Internet of Things (IoT). The security issues researched include attack techniques toward machine learning models and other hardware components widely used in voice assistant applications. The privacy issues include technical-wise information stealing and policy-wise privacy breaches. The voice assistant application takes a steadily growing market share every year, but their privacy and security issues never stopped causing huge economic losses and endangering users' personal sensitive information. Thus, it is important to have a comprehensive survey to outline the categorization of the current research regarding the security and privacy problems of voice assistant applications. This paper concludes and assesses five kinds of security attacks and three types of privacy threats in the papers published in the top-tier conferences of cyber security and voice domain.Comment: 5 figure
    • …
    corecore