182 research outputs found

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    R-PMAC: A Robust Preamble Based MAC Mechanism Applied in Industrial Internet of Things

    Full text link
    This paper proposes a novel media access control (MAC) mechanism, called the robust preamble-based MAC mechanism (R-PMAC), which can be applied to power line communication (PLC) networks in the context of the Industrial Internet of Things (IIoT). Compared with other MAC mechanisms such as P-MAC and the MAC layer of IEEE1901.1, R-PMAC has higher networking speed. Besides, it supports whitelist authentication and functions properly in the presence of data frame loss. Firstly, we outline three basic mechanisms of R-PMAC, containing precise time difference calculation, preambles generation and short ID allocation. Secondly, we elaborate its networking process of single layer and multiple layers. Thirdly, we illustrate its robust mechanisms, including collision handling and data retransmission. Moreover, a low-cost hardware platform is established to measure the time of connecting hundreds of PLC nodes for the R-PMAC, P-MAC, and IEEE1901.1 mechanisms in a real power line environment. The experiment results show that R-PMAC outperforms the other mechanisms by achieving a 50% reduction in networking time. These findings indicate that the R-PMAC mechanism holds great potential for quickly and effectively building a PLC network in actual industrial scenarios.Comment: This paper has been accepted by IEEE Internet of Things Journa

    Decentralized Ultra-Reliable Low-Latency Communications through Concurrent Cooperative Transmission

    Get PDF
    Emerging cyber-physical systems demand for communication technologies that enable seamless interactions between humans and physical objects in a shared environment. This thesis proposes decentralized URLLC (dURLLC) as a new communication paradigm that allows the nodes in a wireless multi-hop network (WMN) to disseminate data quickly, reliably and without using a centralized infrastructure. To enable the dURLLC paradigm, this thesis explores the practical feasibility of concurrent cooperative transmission (CCT) with orthogonal frequency-division multiplexing (OFDM). CCT allows for an efficient utilization of the medium by leveraging interference instead of trying to avoid collisions. CCT-based network flooding disseminates data in a WMN through a reception-triggered low-level medium access control (MAC). OFDM provides high data rates by using a large bandwidth, resulting in a short transmission duration for a given amount of data. This thesis explores CCT-based network flooding with the OFDM-based IEEE 802.11 Non-HT and HT physical layers (PHYs) to enable interactions with commercial devices. An analysis of CCT with the IEEE 802.11 Non-HT PHY investigates the combined effects of the phase offset (PO), the carrier frequency offset (CFO) and the time offset (TO) between concurrent transmitters, as well as the elapsed time. The analytical results of the decodability of a CCT are validated in simulations and in testbed experiments with Wireless Open Access Research Platform (WARP) v3 software-defined radios (SDRs). CCT with coherent interference (CI) is the primary approach of this thesis. Two prototypes for CCT with CI are presented that feature mechanisms for precise synchronization in time and frequency. One prototype is based on the WARP v3 and its IEEE 802.11 reference design, whereas the other prototype is created through firmware modifications of the Asus RT-AC86U wireless router. Both prototypes are employed in testbed experiments in which two groups of nodes generate successive CCTs in a ping-pong fashion to emulate flooding processes with a very large number of hops. The nodes stay synchronized in experiments with 10 000 successive CCTs for various modulation and coding scheme (MCS) indices and MAC service data unit (MSDU) sizes. The URLLC requirement of delivering a 32-byte MSDU with a reliability of 99.999 % and with a latency of 1 ms is assessed in experiments with 1 000 000 CCTs, while the reliability is approximated by means of the frame reception rate (FRR). An FRR of at least 99.999 % is achieved at PHY data rates of up to 48 Mbit/s under line-of-sight (LOS) conditions and at PHY data rates of up to 12 Mbit/s under non-line-of-sight (NLOS) conditions on a 20 MHz wide channel, while the latency per hop is 48.2 µs and 80.2 µs, respectively. With four multiple input multiple output (MIMO) spatial streams on a 40 MHz wide channel, a LOS receiver achieves an FRR of 99.5 % at a PHY data rate of 324 Mbit/s. For CCT with incoherent interference, this thesis proposes equalization with time-variant zero-forcing (TVZF) and presents a TVZF receiver for the IEEE 802.11 Non-HT PHY, achieving an FRR of up to 92 % for CCTs from three unsyntonized commercial devices. As CCT-based network flooding allows for an implicit time synchronization of all nodes, a reception-triggered low-level MAC and a reservation-based high-level MAC may in combination support various applications and scenarios under the dURLLC paradigm

    LOW-RESOLUTION CUSTOMIZABLE UBIQUITOUS DISPLAYS

    Get PDF
    In a conventional display, pixels are constrained within the rectangular or circular boundaries of the device. This thesis explores moving pixels from a screen into the surrounding environment to form ubiquitous displays. The surrounding environment can include a human, walls, ceiling, and floor. To achieve this goal, we explore the idea of customizable displays: displays that can be customized in terms of shapes, sizes, resolutions, and locations to fit into the existing infrastructure. These displays require pixels that can easily combine to create different display layouts and provide installation flexibility. To build highly customizable displays, we need to design pixels with a higher level of independence in its operation. This thesis shows different display designs that use pixels with pixel independence ranging from low to high. Firstly, we explore integrating pixels into clothing using battery-powered tethered LEDs to shine information through pockets. Secondly, to enable integrating pixels into the architectural surroundings, we explore using battery-powered untethered pixels that allow building displays of different shapes and sizes on a desired surface. The display can show images and animations on the custom display configuration. Thirdly, we explore the design of a solar-powered independent pixel that can integrate into walls or construction materials to form a display. These pixels overcome the need to recharge them explicitly. Lastly, we explore the design of a mechanical pixel element that can be embedded into construction material to form display panels. The information on these displays is updated manually when a user brushes over the pixels. Our work takes a step forward in designing pixels with higher operation independence to envision a future of displays anywhere and everywhere

    Systematic Approaches for Telemedicine and Data Coordination for COVID-19 in Baja California, Mexico

    Get PDF
    Conference proceedings info: ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologies Raleigh, HI, United States, March 24-26, 2023 Pages 529-542We provide a model for systematic implementation of telemedicine within a large evaluation center for COVID-19 in the area of Baja California, Mexico. Our model is based on human-centric design factors and cross disciplinary collaborations for scalable data-driven enablement of smartphone, cellular, and video Teleconsul-tation technologies to link hospitals, clinics, and emergency medical services for point-of-care assessments of COVID testing, and for subsequent treatment and quar-antine decisions. A multidisciplinary team was rapidly created, in cooperation with different institutions, including: the Autonomous University of Baja California, the Ministry of Health, the Command, Communication and Computer Control Center of the Ministry of the State of Baja California (C4), Colleges of Medicine, and the College of Psychologists. Our objective is to provide information to the public and to evaluate COVID-19 in real time and to track, regional, municipal, and state-wide data in real time that informs supply chains and resource allocation with the anticipation of a surge in COVID-19 cases. RESUMEN Proporcionamos un modelo para la implementación sistemática de la telemedicina dentro de un gran centro de evaluación de COVID-19 en el área de Baja California, México. Nuestro modelo se basa en factores de diseño centrados en el ser humano y colaboraciones interdisciplinarias para la habilitación escalable basada en datos de tecnologías de teleconsulta de teléfonos inteligentes, celulares y video para vincular hospitales, clínicas y servicios médicos de emergencia para evaluaciones de COVID en el punto de atención. pruebas, y para el tratamiento posterior y decisiones de cuarentena. Rápidamente se creó un equipo multidisciplinario, en cooperación con diferentes instituciones, entre ellas: la Universidad Autónoma de Baja California, la Secretaría de Salud, el Centro de Comando, Comunicaciones y Control Informático. de la Secretaría del Estado de Baja California (C4), Facultades de Medicina y Colegio de Psicólogos. Nuestro objetivo es proporcionar información al público y evaluar COVID-19 en tiempo real y rastrear datos regionales, municipales y estatales en tiempo real que informan las cadenas de suministro y la asignación de recursos con la anticipación de un aumento de COVID-19. 19 casos.ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologieshttps://doi.org/10.1007/978-981-99-3236-

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum

    Advanced Technique and Future Perspective for Next Generation Optical Fiber Communications

    Get PDF
    Optical fiber communication industry has gained unprecedented opportunities and achieved rapid progress in recent years. However, with the increase of data transmission volume and the enhancement of transmission demand, the optical communication field still needs to be upgraded to better meet the challenges in the future development. Artificial intelligence technology in optical communication and optical network is still in its infancy, but the existing achievements show great application potential. In the future, with the further development of artificial intelligence technology, AI algorithms combining channel characteristics and physical properties will shine in optical communication. This reprint introduces some recent advances in optical fiber communication and optical network, and provides alternative directions for the development of the next generation optical fiber communication technology

    The Virtual Bus: A Network Architecture Designed to Support Modular-Redundant Distributed Periodic Real-Time Control Systems

    Get PDF
    The Virtual Bus network architecture uses physical layer switching and a combination of space- and time-division multiplexing to link segments of a partial mesh network together on schedule to temporarily form contention-free multi-hop, multi-drop simplex signalling paths, or 'virtual buses'. Network resources are scheduled and routed by a dynamic distributed resource allocation mechanism with self-forming and self-healing characteristics. Multiple virtual buses can coexist simultaneously in a single network, as the resources allocated to each bus are orthogonal in either space or time. The Virtual Bus architecture achieves deterministic delivery times for time-sensitive traffic over multi-hop partial mesh networks by employing true line-speed switching; delays of around 15ns at each switching point are demonstrated experimentally, and further reductions in switching delays are shown to be achievable. Virtual buses are inherently multicast, with delivery skew across multiple destinations proportional to the difference in equivalent physical length to each destination. The Virtual Bus architecture is not a purely theoretical concept; a small research platform has been constructed for development, testing and demonstration purposes

    Software Takes Command

    Get PDF
    This book is available as open access through the Bloomsbury Open Access programme and is available on www.bloomsburycollections.com. Software has replaced a diverse array of physical, mechanical, and electronic technologies used before 21st century to create, store, distribute and interact with cultural artifacts. It has become our interface to the world, to others, to our memory and our imagination - a universal language through which the world speaks, and a universal engine on which the world runs. What electricity and combustion engine were to the early 20th century, software is to the early 21st century. Offering the the first theoretical and historical account of software for media authoring and its effects on the practice and the very concept of 'media,' the author of The Language of New Media (2001) develops his own theory for this rapidly-growing, always-changing field. What was the thinking and motivations of people who in the 1960 and 1970s created concepts and practical techniques that underlie contemporary media software such as Photoshop, Illustrator, Maya, Final Cut and After Effects? How do their interfaces and tools shape the visual aesthetics of contemporary media and design? What happens to the idea of a 'medium' after previously media-specific tools have been simulated and extended in software? Is it still meaningful to talk about different mediums at all? Lev Manovich answers these questions and supports his theoretical arguments by detailed analysis of key media applications such as Photoshop and After Effects, popular web services such as Google Earth, and the projects in motion graphics, interactive environments, graphic design and architecture. Software Takes Command is a must for all practicing designers and media artists and scholars concerned with contemporary media

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems
    corecore