256 research outputs found

    Let the Tree Bloom: Scalable Opportunistic Routing with ORPL

    Get PDF
    Routing in battery-operated wireless networks is challenging, posing a tradeoff between energy and latency. Previous work has shown that opportunistic routing can achieve low-latency data collection in duty-cycled networks. However, applications are now considered where nodes are not only periodic data sources, but rather addressable end points generating traffic with arbitrary patterns. We present ORPL, an opportunistic routing protocol that supports any-to-any, on-demand traffic. ORPL builds upon RPL, the standard protocol for low-power IPv6 networks. By combining RPL's tree-like topology with opportunistic routing, ORPL forwards data to any destination based on the mere knowledge of the nodes' sub-tree. We use bitmaps and Bloom filters to represent and propagate this information in a space-efficient way, making ORPL scale to large networks of addressable nodes. Our results in a 135-node testbed show that ORPL outperforms a number of state-of-the-art solutions including RPL and CTP, conciliating a sub-second latency and a sub-percent duty cycle. ORPL also increases robustness and scalability, addressing the whole network reliably through a 64-byte Bloom filter, where RPL needs kilobytes of routing tables for the same task

    IETF standardization in the field of the Internet of Things (IoT): a survey

    Get PDF
    Smart embedded objects will become an important part of what is called the Internet of Things. However, the integration of embedded devices into the Internet introduces several challenges, since many of the existing Internet technologies and protocols were not designed for this class of devices. In the past few years, there have been many efforts to enable the extension of Internet technologies to constrained devices. Initially, this resulted in proprietary protocols and architectures. Later, the integration of constrained devices into the Internet was embraced by IETF, moving towards standardized IP-based protocols. In this paper, we will briefly review the history of integrating constrained devices into the Internet, followed by an extensive overview of IETF standardization work in the 6LoWPAN, ROLL and CoRE working groups. This is complemented with a broad overview of related research results that illustrate how this work can be extended or used to tackle other problems and with a discussion on open issues and challenges. As such the aim of this paper is twofold: apart from giving readers solid insights in IETF standardization work on the Internet of Things, it also aims to encourage readers to further explore the world of Internet-connected objects, pointing to future research opportunities

    Joint multicast routing and channel assignment in multiradio multichannel wireless mesh networks using tabu search

    Get PDF
    Copyright @ 2009 IEEE Computer SocietyThis paper proposes a tabu search (TS) based optimization approach to search a minimum-interference multicast tree which satisfies the end-to-end delay constraint and optimizes the usage of the scarce radio network resource in wireless mesh networks. The path-oriented encoding method is adopted and each candidate solution is represented by a tree data structure (i.e., a set of paths). Since we expect the multicast trees on which the minimum-interference channel assignment can be produced, a fitness function that returns the total channel conflict is devised. The techniques for controlling the tabu search procedure are well developed. A simple yet effective channel assignment algorithm is proposed to reduce the channel conflict. Simulation results show that the proposed TS multicast algorithm can produce the multicast trees which have better performance in terms of both the total channel conflict and the tree cost than that of a well known multicast algorithm in wireless mesh networks.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1

    A COMMUNICATION FRAMEWORK FOR MULTIHOP WIRELESS ACCESS AND SENSOR NETWORKS: ANYCAST ROUTING & SIMULATION TOOLS

    Get PDF
    The reliance on wireless networks has grown tremendously within a number of varied application domains, prompting an evolution towards the use of heterogeneous multihop network architectures. We propose and analyze two communication frameworks for such networks. A first framework is designed for communications within multihop wireless access networks. The framework supports dynamic algorithms for locating access points using anycast routing with multiple metrics and balancing network load. The evaluation shows significant performance improvement over traditional solutions. A second framework is designed for communication within sensor networks and includes lightweight versions of our algorithms to fit the limitations of sensor networks. Analysis shows that this stripped down version can work almost equally well if tailored to the needs of a sensor network. We have also developed an extensive simulation environment using NS-2 to test realistic situations for the evaluations of our work. Our tools support analysis of realistic scenarios including the spreading of a forest fire within an area, and can easily be ported to other simulation software. Lastly, we us our algorithms and simulation environment to investigate sink movements optimization within sensor networks. Based on these results, we propose strategies, to be addressed in follow-on work, for building topology maps and finding optimal data collection points. Altogether, the communication framework and realistic simulation tools provide a complete communication and evaluation solution for access and sensor networks

    Joint multicast routing and channel assignment in multiradio multichannel wireless mesh networks using simulated annealing

    Get PDF
    This is the post-print version of the article - Copyright @ 2008 Springer-VerlagThis paper proposes a simulated annealing (SA) algorithm based optimization approach to search a minimum-interference multicast tree which satisfies the end-to-end delay constraint and optimizes the usage of the scarce radio network resource in wireless mesh networks. In the proposed SA multicast algorithm, the path-oriented encoding method is adopted and each candidate solution is represented by a tree data structure (i.e., a set of paths). Since we anticipate the multicast trees on which the minimum-interference channel assignment can be produced, a fitness function that returns the total channel conflict is devised. The techniques for controlling the annealing process are well developed. A simple yet effective channel assignment algorithm is proposed to reduce the channel conflict. Simulation results show that the proposed SA based multicast algorithm can produce the multicast trees which have better performance in terms of both the total channel conflict and the tree cost than that of a well known multicast algorithm in wireless mesh networks.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1

    Improvement at Network Planning using Heuristic Algorithm to Minimize Cost of Distance between Nodes in Wireless Mesh Networks

    Get PDF
    Wireless Mesh Networks (WMN) consists of wireless stations that are connected with each other in a semi-static configuration. Depending on the configuration of a WMN, different paths between nodes offer different levels of efficiency. One areas of research with regard to WMN is cost minimization. A Modified Binary Particle Swarm Optimization (MBPSO) approach was used to optimize cost. However, minimized cost does not guarantee network performance. This paper thus, modified the minimization function to take into consideration the distance between the different nodes so as to enable better performance while maintaining cost balance. The results were positive with the PDR showing an approximate increase of 17.83% whereas the E2E delay saw an approximate decrease of 8.33%

    Unified Theory of Relativistic Identification of Information in a Systems Age: Proposed Convergence of Unique Identification with Syntax and Semantics through Internet Protocol version 6

    Get PDF
    Unique identification of objects are helpful to the decision making process in many domains. Decisions, however, are often based on information that takes into account multiple factors. Physical objects and their unique identification may be one of many factors. In real-world scenarios, increasingly decisions are based on collective information gathered from multiple sources (or systems) and then combined to a higher level domain that may trigger a decision or action. Currently, we do not have a globally unique mechanism to identify information derived from data originating from objects and processes. Unique identification of information, hence, is an open question. In addition, information, to be of value, must be related to the context of the process. In general, contextual information is of greater relevance in the decision making process or in decision support systems. In this working paper, I shall refer to such information as decisionable information. The suggestion here is to utilize the vast potential of internet protocol version six (IPv6) to uniquely identify not only objects and processes but also relationships (semantics) and interfaces (sensors). Convergence of identification of diverse entities using the globally agreed structure of IPv6 offers the potential to identify 3.4x10[subscript 38] instances based on the fact that the 128-bit IPv6 structure can support 3.4x10[subscript 38] unique addresses. It is not necessary that all instances must be connected to the internet or routed or transmitted simply because an IP addressing scheme is suggested. This is a means for identification that will be globally unique and offers the potential to be connected or routed via the internet. In this working paper, scenarios offer [1] new revenue potential from data routing (P2P traffic track and trace) for telecommunication industries, [2] potential for use in healthcare and biomedical community, [3] scope of use in the semantic web structure by transitioning URIs used in RDF, [4] applications involving thousands of mobile ad hoc sensors (MANET) that demand dynamic adaptive auto-reconfiguration. This paper presents a confluence of ideas

    6LoWPAN:IPv6 for battery-less building networks

    Get PDF
    • …
    corecore