182 research outputs found

    Adaptation of the human nervous system for self-aware secure mobile and IoT systems

    Get PDF
    IT systems have been deployed across several domains, such as hospitals and industries, for the management of information and operations. These systems will soon be ubiquitous in every field due to the transition towards the Internet of Things (IoT). The IoT brings devices with sensory functions into IT systems through the process of internetworking. The sensory functions of IoT enable them to generate and process information automatically, either without human contribution or having the least human interaction possible aside from the information and operations management tasks. Security is crucial as it prevents system exploitation. Security has been employed after system implementation, and has rarely been considered as a part of the system. In this dissertation, a novel solution based on a biological approach is presented to embed security as an inalienable part of the system. The proposed solution, in the form of a prototype of the system, is based on the functions of the human nervous system (HNS) in protecting its host from the impacts caused by external or internal changes. The contributions of this work are the derivation of a new system architecture from HNS functionalities and experiments that prove the implementation feasibility and efficiency of the proposed HNS-based architecture through prototype development and evaluation. The first contribution of this work is the adaptation of human nervous system functions to propose a new architecture for IT systems security. The major organs and functions of the HNS are investigated and critical areas are identified for the adaptation process. Several individual system components with similar functions to the HNS are created and grouped to form individual subsystems. The relationship between these components is established in a similar way as in the HNS, resulting in a new system architecture that includes security as a core component. The adapted HNS-based system architecture is employed in two the experiments prove its implementation capability, enhancement of security, and overall system operations. The second contribution is the implementation of the proposed HNS-based security solution in the IoT test-bed. A temperature-monitoring application with an intrusion detection system (IDS) based on the proposed HNS architecture is implemented as part of the test-bed experiment. Contiki OS is used for implementation, and the 6LoWPAN stack is modified during the development process. The application, together with the IDS, has a brain subsystem (BrSS), a spinal cord subsystem (SCSS), and other functions similar to the HNS whose names are changed. The HNS functions are shared between an edge router and resource-constrained devices (RCDs) during implementation. The experiment is evaluated in both test-bed and simulation environments. Zolertia Z1 nodes are used to form a 6LoWPAN network, and an edge router is created by combining Pandaboard and Z1 node for a test-bed setup. Two networks with different numbers of sensor nodes are used as simulation environments in the Cooja simulator. The third contribution of this dissertation is the implementation of the proposed HNS-based architecture in the mobile platform. In this phase, the Android operating system (OS) is selected for experimentation, and the proposed HNS-based architecture is specifically tailored for Android. A context-based dynamically reconfigurable access control system (CoDRA) is developed based on the principles of the refined HNS architecture. CoDRA is implemented through customization of Android OS and evaluated under real-time usage conditions in test-bed environments. During the evaluation, the implemented prototype mimicked the nature of the HNS in securing the application under threat with negligible resource requirements and solved the problems in existing approaches by embedding security within the system. Furthermore, the results of the experiments highlighted the retention of HNS functions after refinement for different IT application areas, especially the IoT, due to its resource-constrained nature, and the implementable capability of our proposed HNS architecture.--- IT-järjestelmiä hyödynnetään tiedon ja toimintojen hallinnassa useilla aloilla, kuten sairaaloissa ja teollisuudessa. Siirtyminen kohti esineiden Internetiä (Internet of Things, IoT) tuo tällaiset laitteet yhä kiinteämmäksi osaksi jokapäiväistä elämää. IT-järjestelmiin liitettyjen IoT-laitteiden sensoritoiminnot mahdollistavat tiedon automaattisen havainnoinnin ja käsittelyn osana suurempaa järjestelmää jopa täysin ilman ihmisen myötävaikutusta, poislukien mahdolliset ylläpito- ja hallintatoimenpiteet. Turvallisuus on ratkaisevan tärkeää IT-järjestelmien luvattoman käytön estämiseksi. Valitettavan usein järjestelmäsuunnittelussa turvallisuus ei ole osana ydinsuunnitteluprosessia, vaan otetaan huomioon vasta käyttöönoton jälkeen. Tässä väitöskirjassa esitellään uudenlainen biologiseen lähestymistapaan perustuva ratkaisu, jolla turvallisuus voidaan sisällyttää erottamattomaksi osaksi järjestelmää. Ehdotettu prototyyppiratkaisu perustuu ihmisen hermoston toimintaan tilanteessa, jossa se suojelee isäntäänsä ulkoisten tai sisäisten muutosten vaikutuksilta. Tämän työn keskeiset tulokset ovat uuden järjestelmäarkkitehtuurin johtaminen ihmisen hermoston toimintaperiaatteesta sekä tällaisen järjestelmän toteutettavuuden ja tehokkuuden arviointi kokeellisen prototyypin kehittämisen ja toiminnan arvioinnin avulla. Tämän väitöskirjan ensimmäinen kontribuutio on ihmisen hermoston toimintoihin perustuva IT-järjestelmäarkkitehtuuri. Tutkimuksessa arvioidaan ihmisen hermoston toimintaa ja tunnistetaan keskeiset toiminnot ja toiminnallisuudet, jotka mall-innetaan osaksi kehitettävää järjestelmää luomalla näitä vastaavat järjestelmäkomponentit. Nä-istä kootaan toiminnallisuudeltaan hermostoa vastaavat osajärjestelmät, joiden keskinäinen toiminta mallintaa ihmisen hermoston toimintaa. Näin luodaan arkkitehtuuri, jonka keskeisenä komponenttina on turvallisuus. Tämän pohjalta toteutetaan kaksi prototyyppijärjestelmää, joiden avulla arvioidaan arkkitehtuurin toteutuskelpoisuutta, turvallisuutta sekä toimintakykyä. Toinen kontribuutio on esitetyn hermostopohjaisen turvallisuusratkaisun toteuttaminen IoT-testialustalla. Kehitettyyn arkkitehtuuriin perustuva ja tunkeutumisen estojärjestelmän (intrusion detection system, IDS) sisältävä lämpötilan seurantasovellus toteutetaan käyttäen Contiki OS -käytöjärjestelmää. 6LoWPAN protokollapinoa muokataan tarpeen mukaan kehitysprosessin aikana. IDS:n lisäksi sovellukseen kuuluu aivo-osajärjestelmä (Brain subsystem, BrSS), selkäydinosajärjestelmä (Spinal cord subsystem, SCSS), sekä muita hermoston kaltaisia toimintoja. Nämä toiminnot jaetaan reunareitittimen ja resurssirajoitteisten laitteiden kesken. Tuloksia arvioidaan sekä simulaatioiden että testialustan tulosten perusteella. Testialustaa varten 6LoWPAN verkon toteutukseen valittiin Zolertia Z1 ja reunareititin on toteutettu Pandaboardin ja Z1:n yhdistelmällä. Cooja-simulaattorissa käytettiin mallinnukseen ymp-äristönä kahta erillistä ja erikokoisuta sensoriverkkoa. Kolmas tämän väitöskirjan kontribuutio on kehitetyn hermostopohjaisen arkkitehtuurin toteuttaminen mobiilialustassa. Toteutuksen alustaksi valitaan Android-käyttöjärjestelmä, ja kehitetty arkkitehtuuri räätälöidään Androidille. Tuloksena on kontekstipohjainen dynaamisesti uudelleen konfiguroitava pääsynvalvontajärjestelmä (context-based dynamically reconfigurable access control system, CoDRA). CoDRA toteutetaan mukauttamalla Androidin käyttöjärjestelmää ja toteutuksen toimivuutta arvioidaan reaaliaikaisissa käyttöolosuhteissa testialustaympäristöissä. Toteutusta arvioitaessa havaittiin, että kehitetty prototyyppi jäljitteli ihmishermoston toimintaa kohdesovelluksen suojaamisessa, suoriutui tehtävästään vähäisillä resurssivaatimuksilla ja onnistui sisällyttämään turvallisuuden järjestelmän ydintoimintoihin. Tulokset osoittivat, että tämän tyyppinen järjestelmä on toteutettavissa sekä sen, että järjestelmän hermostonkaltainen toiminnallisuus säilyy siirryttäessä sovellusalueelta toiselle, erityisesti resursseiltaan rajoittuneissa IoT-järjestelmissä

    Intrusion detection in IPv6-enabled sensor networks.

    Get PDF
    In this research, we study efficient and lightweight Intrusion Detection Systems (IDS) for ad-hoc networks through the lens of IPv6-enabled Wireless Sensor Actuator Networks. These networks consist of highly constrained devices able to communicate wirelessly in an ad-hoc fashion, thus following the architecture of ad-hoc networks. Current state of the art IDS in IoT and WSNs have been developed considering the architecture of conventional computer networks, and as such they do not efficiently address the paradigm of ad-hoc networks, which is highly relevant in emerging network paradigms, such as the Internet of Things (IoT). In this context, the network properties of resilience and redundancy have not been extensively studied. In this thesis, we first identify a trade-off between the communication and energy overheads of an IDS (as captured by the number of active IDS agents in the network) and the performance of the system in terms of successfully identifying attacks. In order to fine-tune this trade-off, we model networks as Random Geometric Graphs; these are a rigorous approach that allows us to capture underlying structural properties of the network. We then introduce a novel IDS architectural approach that consists of a central IDS agent and set of distributed IDS agents deployed uniformly at random over the network area. These nodes are able to efficiently detect attacks at the networking layer in a collaborative manner by monitoring locally available network information provided by IoT routing protocols, such as RPL. The detailed experimental evaluation conducted in this research demonstrates significant performance gains in terms of communication overhead and energy dissipation while maintaining high detection rates. We also show that the performance of our IDS in ad-hoc networks does not rely on the size of the network but on fundamental underling network properties, such as the network topology and the average degree of the nodes. The experiments show that our proposed IDS architecture is resilient against frequent topology changes due to node failures

    Security techniques for sensor systems and the Internet of Things

    Get PDF
    Sensor systems are becoming pervasive in many domains, and are recently being generalized by the Internet of Things (IoT). This wide deployment, however, presents significant security issues. We develop security techniques for sensor systems and IoT, addressing all security management phases. Prior to deployment, the nodes need to be hardened. We develop nesCheck, a novel approach that combines static analysis and dynamic checking to efficiently enforce memory safety on TinyOS applications. As security guarantees come at a cost, determining which resources to protect becomes important. Our solution, OptAll, leverages game-theoretic techniques to determine the optimal allocation of security resources in IoT networks, taking into account fixed and variable costs, criticality of different portions of the network, and risk metrics related to a specified security goal. Monitoring IoT devices and sensors during operation is necessary to detect incidents. We design Kalis, a knowledge-driven intrusion detection technique for IoT that does not target a single protocol or application, and adapts the detection strategy to the network features. As the scale of IoT makes the devices good targets for botnets, we design Heimdall, a whitelist-based anomaly detection technique for detecting and protecting against IoT-based denial of service attacks. Once our monitoring tools detect an attack, determining its actual cause is crucial to an effective reaction. We design a fine-grained analysis tool for sensor networks that leverages resident packet parameters to determine whether a packet loss attack is node- or link-related and, in the second case, locate the attack source. Moreover, we design a statistical model for determining optimal system thresholds by exploiting packet parameters variances. With our techniques\u27 diagnosis information, we develop Kinesis, a security incident response system for sensor networks designed to recover from attacks without significant interruption, dynamically selecting response actions while being lightweight in communication and energy overhead
    corecore