764 research outputs found

    High Speed Chaos in Optical Feedback System with Flexible Timescales

    Full text link
    We describe a new opto-electronic device with time-delayed feedback that uses a Mach-Zehnder interferometer as passive nonlinearity and a semiconductor laser as a current-to-optical-frequency converter. Bandlimited feedback allows tuning of the characteristic time scales of both the periodic and high dimensional chaotic oscillations that can be generated with the device. Our implementation of the device produces oscillations in the frequency range of tens to hundreds of MHz. We develop a model and use it to explore the experimentally observed Andronov-Hopf bifurcation of the steady state and to estimate the dimension of the chaotic attractor.Comment: 7 pages, 6 figures, to be published in IEEE J. Quantum Electro

    Physics and Applications of Laser Diode Chaos

    Full text link
    An overview of chaos in laser diodes is provided which surveys experimental achievements in the area and explains the theory behind the phenomenon. The fundamental physics underpinning this behaviour and also the opportunities for harnessing laser diode chaos for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient test-bed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.Comment: Published in Nature Photonic

    Comprehensive experimental analysis of nonlinear dynamics in an optically-injected semiconductor laser

    Get PDF
    We present the first comprehensive experimental study, to our knowledge, of the routes between nonlinear dynamics induced in a semiconductor laser under external optical injection based on an analysis of time-averaged measurements of the optical and RF spectra and phasors of real-time series of the laser output. The different means of analysis are compared for several types of routes and the benefits of each are discussed in terms of the identification and mapping of the nonlinear dynamics. Finally, the results are presented in a novel audio/video format that describes the evolution of the dynamics with the injection parameters. © 2011 Author(s)

    Chaos and Regularity in Semiconductor Microcavities

    Full text link
    Our work presents a study on the nonlinear dynamical behavior for a microcavity semiconductor containing a quantum well. Using an external periodic perturbation in energy level we observe the periodic-doubling, quasiperiodic, and direct route to chaos as forcing strength is changed. For a particular case the riddled basin for coexisting periodic and chaotic motions are observed. These results suggest that the dynamics of exciton-photon is quite complex in presence of external perturbation.Comment: To be appeared in Phys. Lett.

    Observation of nonlinear dynamics and transition to chaos in photonic integrated circuits

    Get PDF
    Photonic Integrated Circuit (PIC) technology has revolutionized the application and fabrication of optoelectronic devices. Most affected by this development is the field of telecommunications, where both active and passive photonic devices are key components in the optical networks. PIC based optical components are cheaper to fabricate than their stand-alone counter parts, multifunctional, low energy consumers and much smaller in size. These qualities make PICs very attractive from a mass-integration point of view and they are generally viewed as the successors of electronic ICs. In this work we demonstrate that the nonlinear dynamics exhibited by the PICs are stable, well-classifiable from a bifurcational theoretical point of view and reproducible from batch-to-batch
    corecore