216 research outputs found

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle

    Algorithm Engineering for Realistic Journey Planning in Transportation Networks

    Get PDF
    Diese Dissertation beschäftigt sich mit der Routenplanung in Transportnetzen. Es werden neue, effiziente algorithmische Ansätze zur Berechnung optimaler Verbindungen in öffentlichen Verkehrsnetzen, Straßennetzen und multimodalen Netzen, die verschiedene Transportmodi miteinander verknüpfen, eingeführt. Im Fokus der Arbeit steht dabei die Praktikabilität der Ansätze, was durch eine ausführliche experimentelle Evaluation belegt wird

    Engineering Algorithms for Route Planning in Multimodal Transportation Networks

    Get PDF
    Practical algorithms for route planning in transportation networks are a showpiece of successful Algorithm Engineering. This has produced many speedup techniques, varying in preprocessing time, space, query performance, simplicity, and ease of implementation. This thesis explores solutions to more realistic scenarios, taking into account, e.g., traffic, user preferences, public transit schedules, and the options offered by the many modalities of modern transportation networks

    Modeling and Engineering Constrained Shortest Path Algorithms for Battery Electric Vehicles

    Get PDF
    We study the problem of computing constrained shortest paths for battery electric vehicles. Since battery capacities are limited, fastest routes are often infeasible. Instead, users are interested in fast routes where the energy consumption does not exceed the battery capacity. For that, drivers can deliberately reduce speed to save energy. Hence, route planning should provide both path and speed recommendations. To tackle the resulting NP-hard optimization problem, previous work trades correctness or accuracy of the underlying model for practical running times. In this work, we present a novel framework to compute optimal constrained shortest paths for electric vehicles that uses more realistic physical models, while taking speed adaptation into account. Careful algorithm engineering makes the approach practical even on large, realistic road networks: We compute optimal solutions in less than a second for typical battery capacities, matching performance of previous inexact methods. For even faster performance, the approach can easily be extended with heuristics that provide high quality solutions within milliseconds

    Pareto Sums of Pareto Sets

    Get PDF

    Generating constrained length personalized bicycle tours

    Get PDF
    In the context of recreational routing, the problem of finding a route which starts and ends in the same location (while achieving a length between specified upper and lower boundaries) is a common task, especially for tourists or cyclists who want to exercise. The topic of finding a tour between a specified starting and ending location while minimizing one or multiple criteria is well covered in literature. In contrast to this, the route planning task in which a pleasant tour with length between a maximum and a minimum boundary needs to be found is relatively underexplored. In this paper, we provide a formal definition of this problem, taking into account the existing literature on which route attributes influence cyclists in their route choice. We show that the resulting problem is NP-hard and devise a branch-and-bound algorithm that is able to provide a bound on the quality of the best solution in pseudo-polynomial time. Furthermore, we also create an efficient heuristic to tackle the problem and we compare the quality of the solutions that are generated by the heuristic with the bounds provided by the branch-and-bound algorithm. Also, we thoroughly discuss the complexity and running time of the heuristic
    corecore