226 research outputs found

    Pontryagin's Minimum Principle based model predictive control of energy management for a plug-in hybrid electric bus

    Get PDF
    To improve computational efficiency of energy management strategies for plug-in hybrid electric vehicles (PHEVs), this paper proposes a stochastic model predictive controller (MPC) based on Pontryagin’s Minimum Principle (PMP), which differs from widely used dynamic programming (DP)-based predictive methods. First, short-time speed forecasting is achieved using a Markov chain model, based on real-world driving cycles. The PMP- and DP-based MPCs are compared under four preview horizons (5 s, 10 s, 15 s and 20 s), and the results show that the computational time of the DP-MPC is almost four times of that in the PMP-MPC. Moreover, the influence of predication horizon length on computational time and energy consumption is examined. Given a preview horizon of 5 s, the PMP-MPC holds a total energy consumption cost of 7.80 USD and computational time per second of 0.0130 s. When the preview horizon increases to 20 s, the total cost is 7.77 USD with the computational time per second increasing to 0.0502 s. Finally, DP, PMP, and rule-based strategies are contrasted to the PMP-MPC method, further demonstrating the promising performance and computational efficiency of the proposed methodology

    Integrated Thermal and Energy Management of Connected Hybrid Electric Vehicles Using Deep Reinforcement Learning

    Get PDF
    The climate-adaptive energy management system holds promising potential for harnessing the concealed energy-saving capabilities of connected plug-in hybrid electric vehicles. This research focuses on exploring the synergistic effects of artificial intelligence control and traffic preview to enhance the performance of the energy management system (EMS). A high-fidelity model of a multi-mode connected PHEV is calibrated using experimental data as a foundation. Subsequently, a model-free multistate deep reinforcement learning (DRL) algorithm is proposed to develop the integrated thermal and energy management (ITEM) system, incorporating features of engine smart warm-up and engine-assisted heating for cold climate conditions. The optimality and adaptability of the proposed system is evaluated through both offline tests and online hardware-in-the-loop tests, encompassing a homologation driving cycle and a real-world driving cycle in China with real-time traffic data. The results demonstrate that ITEM achieves a close to dynamic programming fuel economy performance with a margin of 93.7%, while reducing fuel consumption ranging from 2.2% to 9.6% as ambient temperature decreases from 15°C to -15°C in comparison to state-of-the-art DRL-based EMS solutions

    A novel strategy for power sources management in connected plug-in hybrid electric vehicles based on mobile edge computation framework

    Get PDF
    This paper proposes a novel control framework and the corresponding strategy for power sources management in connected plug-in hybrid electric vehicles (cPHEVs). A mobile edge computation (MEC) based control framework is developed first, evolving the conventional on-board vehicle control unit (VCU) into the hierarchically asynchronous controller that is partly located in cloud. Elaborately contrastive analysis on the performance of processing capacity, communication frequency and communication delay manifests dramatic potential of the proposed framework in sustaining development of the cooperative control strategy for cPHEVs. On the basis of MEC based control framework, a specific cooperative strategy is constructed. The novel strategy accomplishes energy flow management between different power sources with incorporation of the active energy consumption plan and adaptive energy consumption management. The method to generate the reference battery state-of-charge (SOC) trajectories in energy consumption plan stage is emphatically investigated, fast outputting reference trajectories that are tightly close to results by global optimization methods. The estimation of distribution algorithm (EDA) is employed to output reference control policies under the specific terminal conditions assigned via the machine learning based method. Finally, simulation results highlight that the novel strategy attains superior performance in real-time application that is close to the offline global optimization solutions

    Integrated framework for modeling the interactions of plug-in hybrid electric vehicles aggregators, parking lots and distributed generation facilities in electricity markets

    Get PDF
    This paper presents an integrated framework for the optimal resilient scheduling of an active distribution system in the day-ahead and real-time markets considering aggregators, parking lots, distributed energy resources, and Plug-in Hybrid Electric Vehicles (PHEVs) interactions. The main contribution of this paper is that the impacts of traffic patterns on the available dispatchable active power of PHEVs in day-ahead and real-time markets are explored. A two stage framework is considered. Each stage consists of a four-level optimization procedure that optimizes the scheduling problems of PHEVs, parking lots and distributed energy resources, aggregators, and active distribution system. The distribution system procures ramp-up and ramp-down services for the upward electricity market in a real-time horizon. The active distribution system can utilize a switching procedure to sectionalize its system into a multi-microgrid system to mitigate the impacts of external shocks. The model was assessed by the 123-bus test system. The proposed algorithm reduced the interruption and operating costs of the 123-bus test system by about 94.56% for the worst-case external shock. Further, the traffic pattern decreased the available ramp-up and ramp-down of parking lots by about 58.61% concerning the no-traffic case.© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Towards enabling predictive optimal energy management systems for hybrid electric vehicles with real world considerations

    Get PDF
    2021 Spring.Includes bibliographical references.In the pursuit of greater vehicle fleet efficiency, Predictive Optimal Energy Management Systems (POEMS) enabled Plug-in Hybrid Electric Vehicles (PHEV) have shown promising theoretical results. In order to enable the practical development of POEMS enabled PHEV technology, if must first be determined what method and what data is needed is for providing optimal predictions. Research performed at Colorado State University and partner institutions in 2019 and 2020 pursued a novel course in considering the widest range of possible data and methods of prediction currently available including a survey of all feasible Vehicle to Infrastructure (V2I), Vehicle to Vehicle (V2V), Advance Driver Assistance Systems (ADAS), and Ego vehicle CAN data streams with classical and novel machine learning methods. Real world vehicle operation data was collected in Fort Collins Colorado, processed, and used in the development of optimal prediction methods. From the results of this research, concrete conclusions on the relative value of V2I, V2V, and ADAS information for prediction, and high fidelity predictions were obtained for 10 second horizons using specialized Artificial Neural Networks

    A Trip Planning-Assisted Energy Management System for Connected PHEVs: Evaluation and Enhancement

    Get PDF
    The built-in Energy Management System (EMS) of Plug-in Hybrid Electric Vehicles (PHEVs) plays an important role in the fuel efficiency of these vehicles. Recently, it has been revealed that prior knowledge of the upcoming trip can assist EMS to enhance the distribution of power between the energy sources, i.e. the engine and the motor-generators used in PHEVs, resulting in lower fuel consumptions. This dissertation intends to further investigate on a Trip Planning-assisted EMS (TP-assisted EMS), by studying its feasibility for online implementation, and evaluating its performance and robustness with respect to the trip data uncertainties in various practical scenarios, to ultimately answer this question: Does the TP-assisted EMS function as a reliable system for PHEVs which can outperform conventional methods? This research starts with improving upon an existing Trip Planning module with an emphasis on its online integration with the EMS module. In particular, the power-balance model of PHEVs is introduced, which is computationally inexpensive and yet adequately accurate to be used for the optimizations involved in the Trip Planning module. To speed up the optimizations, the use of Particle Swarm Optimization (PSO) algorithm is suggested. These modifications result in the reduction of computational time, making TP-assisted EMS module suitable for online implementations. Once the TP-assisted EMS module has been integrated with a high-fidelity model of the baseline PHEV, namely, 2013 Toyota Prius PHEV, its performance and sensitivity/robustness have been extensively studied through Monte Carlo simulations, where numerous samples of standard as well as real-world drive cycles have been tested. However, in order to use these data for Model-in-the-Loop (MIL) and Hardware-in-the-Loop (HIL) tests, a Micro-trip Generator block has been developed. This block automatically segments the drive cycles, similar to the way that trip information is obtained in practice, making the simulation samples compatible with the Trip Planning module. Statistical analyses of the simulation results show that the TP-assisted EMS is a superior controller compared to the conventional EMS strategies. Moreover, these simulations present one of the first sensitivity analyses that have been performed in the context of TP-assisted EMS for PHEVs, showing that this system is robust despite the existence of random disturbances and meanwhile has low sensitivity against variations of the design parameters
    • …
    corecore