5 research outputs found

    Hierarchies of Relaxations for Online Prediction Problems with Evolving Constraints

    Get PDF
    We study online prediction where regret of the algorithm is measured against a benchmark defined via evolving constraints. This framework captures online prediction on graphs, as well as other prediction problems with combinatorial structure. A key aspect here is that finding the optimal benchmark predictor (even in hindsight, given all the data) might be computationally hard due to the combinatorial nature of the constraints. Despite this, we provide polynomial-time \emph{prediction} algorithms that achieve low regret against combinatorial benchmark sets. We do so by building improper learning algorithms based on two ideas that work together. The first is to alleviate part of the computational burden through random playout, and the second is to employ Lasserre semidefinite hierarchies to approximate the resulting integer program. Interestingly, for our prediction algorithms, we only need to compute the values of the semidefinite programs and not the rounded solutions. However, the integrality gap for Lasserre hierarchy \emph{does} enter the generic regret bound in terms of Rademacher complexity of the benchmark set. This establishes a trade-off between the computation time and the regret bound of the algorithm

    Rounding Lasserre SDPs using column selection and spectrum-based approximation schemes for graph partitioning and Quadratic IPs

    No full text
    We present an approximation scheme for minimizing certain Quadratic Integer Programming problems with positive semidefinite objective functions and global linear constraints. This framework includes well known graph problems such as Minimum graph bisection, Edge expansion, Sparsest Cut, and Small Set expansion, as well as the Unique Games problem. These problems are notorious for the existence of huge gaps between the known algorithmic results and NP-hardness results. Our algorithm is based on rounding semidefinite programs from the Lasserre hierarchy, and the analysis uses bounds for low-rank approximations of a matrix in Frobenius norm using columns of the matrix. For all the above graph problems, we give an algorithm running in time nO(r/ϵ2) with approximation ratio 1+ϵmin{1,λr}, where λr is the r'th smallest eigenvalue of the normalized graph Laplacian L. In the case of graph bisection and small set expansion, the number of vertices in the cut is within lower-order terms of the stipulated bound. Our results imply (1+O(ϵ)) factor approximation in time nO(r∗/ϵ2) where is the number of eigenvalues of Lsmaller than 1−ϵ (for variants of sparsest cut, λr∗≥OPT/ϵ also suffices, and as OPT is usually o(1) on interesting instances of these problems, this requirement on r∗ is typically weaker). For Unique Games, we give a factor (1+2+ϵλr) approximation for minimizing the number of unsatisfied constraints in nO(r/ϵ) time, improving upon an earlier bound for solving Unique Games on expanders. We also give an algorithm for independent sets in graphs that performs well when the Laplacian does not have too many eigenvalues bigger than 1+o(1).</p
    corecore