10,284 research outputs found

    Ubiquitous energy storage

    Get PDF
    This paper presents a vision of a future power system with "ubiquitous energy storage", where storage would be utilized at all levels of the electricity system. The growing requirement for storage is reviewed, driven by the expansion of distributed generation. The capabilities and existing applications of various storage technologies are presented, providing a useful review of the state of the art. Energy storage will have to be integrated with the power system and there are various ways in which this may be achieved. Some of these options are discussed, as are commercial and regulatory issues. In two case studies, the costs and benefits of some storage options are assessed. It is concluded that electrical storage is not cost effective but that thermal storage offers attractive opportunities

    RETS Revisited : Connecting renewables to the grid - a report by the Transmission Working Group of the Department of Trade & Industry

    Get PDF
    The aim of RETS Revisited is to review the progress that has occurred since the original RETS Report in June 2003. Given the large amount of wind generation planned, and the fact that much of it does not yet have planning consent or firm grid connection offers, it was felt that it would be helpful to take a further strategic look forward, rather than simply relying on the existing system to react to individual connection applications as and when required. RETS Revisited therefore: K considers the current likely volumes of new renewable generation, the timescales for this generation to be ready for connection to the transmission system and transmission issues impacting on the delivery of projects. K considers the effects on costs to the consumer of the rate of development of the transmission system in accommodating renewable energy to meet Government targets. K makes recommendations for action in order to connect sufficient renewables to meet the 2010 target and the aspirations beyond to 2020. Government policy is clear on the requirement for more renewable energy, and there is a market instrument, the Renewables Obligation, in place until 2027 which is driving the development of renewable projects. The Energy White Paper in 2003 recognised the need for the remodelling of the transmission grid to accept generation in new locations. Wind will be the technology capable of delivering significant capacity by 2010 and beyond. By its very nature the technology has limited ability to respond to locational price signals. In order for new generation projects to be connected, there needs to be a parallel development of transmission infrastructure. Transmission upgrades of over ÂŁ560m were approved by Ofgem in December 20041. These will assist the flows of electricity from Scotland. There is a need to ensure that these projects are not unduly delayed in construction. A review of the need for the linkage between upgrades to the Scotland-England interconnectors and Beauly-Denny line should be carried out now

    Long Text Generation via Adversarial Training with Leaked Information

    Get PDF
    Automatically generating coherent and semantically meaningful text has many applications in machine translation, dialogue systems, image captioning, etc. Recently, by combining with policy gradient, Generative Adversarial Nets (GAN) that use a discriminative model to guide the training of the generative model as a reinforcement learning policy has shown promising results in text generation. However, the scalar guiding signal is only available after the entire text has been generated and lacks intermediate information about text structure during the generative process. As such, it limits its success when the length of the generated text samples is long (more than 20 words). In this paper, we propose a new framework, called LeakGAN, to address the problem for long text generation. We allow the discriminative net to leak its own high-level extracted features to the generative net to further help the guidance. The generator incorporates such informative signals into all generation steps through an additional Manager module, which takes the extracted features of current generated words and outputs a latent vector to guide the Worker module for next-word generation. Our extensive experiments on synthetic data and various real-world tasks with Turing test demonstrate that LeakGAN is highly effective in long text generation and also improves the performance in short text generation scenarios. More importantly, without any supervision, LeakGAN would be able to implicitly learn sentence structures only through the interaction between Manager and Worker.Comment: 14 pages, AAAI 201

    Strategic distribution network planning with smart grid technologies

    Get PDF
    This paper presents a multiyear distribution network planning optimization model for managing the operation and capacity of distribution systems with significant penetration of distributed generation (DG). The model considers investment in both traditional network and smart grid technologies, including dynamic line rating, quadrature-booster, and active network management, while optimizing the settings of network control devices and, if necessary, the curtailment of DG output taking into account its network access arrangement (firm or non-firm). A set of studies on a 33 kV real distribution network in the U.K. has been carried out to test the model. The main objective of the studies is to evaluate and compare the performance of different investment approaches, i.e., incremental and strategic investment. The studies also demonstrate the ability of the model to determine the optimal DG connection points to reduce the overall system cost. The results of the studies are discussed in this paper

    BestConfig: Tapping the Performance Potential of Systems via Automatic Configuration Tuning

    Full text link
    An ever increasing number of configuration parameters are provided to system users. But many users have used one configuration setting across different workloads, leaving untapped the performance potential of systems. A good configuration setting can greatly improve the performance of a deployed system under certain workloads. But with tens or hundreds of parameters, it becomes a highly costly task to decide which configuration setting leads to the best performance. While such task requires the strong expertise in both the system and the application, users commonly lack such expertise. To help users tap the performance potential of systems, we present BestConfig, a system for automatically finding a best configuration setting within a resource limit for a deployed system under a given application workload. BestConfig is designed with an extensible architecture to automate the configuration tuning for general systems. To tune system configurations within a resource limit, we propose the divide-and-diverge sampling method and the recursive bound-and-search algorithm. BestConfig can improve the throughput of Tomcat by 75%, that of Cassandra by 63%, that of MySQL by 430%, and reduce the running time of Hive join job by about 50% and that of Spark join job by about 80%, solely by configuration adjustment

    Optimal Transmission Investment Strategies for Sustainable Power Systems

    No full text
    Maintaining security and reliability in the electricity supply is fundamental to the functioning of a modern society and drives the need for adequate transmission capacity for both market participants and customers. Planning the investment in transmission has always been a complicated undertaking due to the high development costs and long lead times. Furthermore, to anticipate the future needs of customers is a task as difficult as that of cost-effective planning and construction of new facilities. Trying to find treatments for some of these issues represents a major motivation for this thesis. This thesis investigates the problem of how much reinforcement a transmission system requires when a significant proportion of wind generation is integrated into an existing transmission system. A multi-period transmission planning model is developed for determining optimal transmission capacity by balancing amortised transmission investment costs and annual generation costs subject to network security constraints, The model employs the security-constrained DC optimal power flow formulation and applies a solver (DashXpress) to obtain the results of the remaining linear large-scale optimisation problem. This thesis begins by exploring the impact of wind generation on the determination of appropriate levels of system capacity on the transmission network starting from the premise that it is no longer cost effective to invest in sufficient network capacity to accommodate simultaneous peaks from all generators. As such, a significant finding of this study is that conventional and wind generation should share network capacity. Given the acknowledged increase in uncertainty to security of supply due to difficulties in wind generation forecast this thesis also explores the optimal sourcing of generation reserve, and investigates investment in transmission capacity to exploit the cost benefits offered by standing reserve. Finally, the thesis presents and evaluates an alternative associated with transmission operation and investment level of risk and uncertainty by introducing more flexibility to the way the transmission system is operated. Application of Quadrature Boosters and Demand Side as model of corrective control, brings savings in operating costs without jeopardizing the level of system security, enables better utilisation of existing facilities and reduces the demand for new transmission investment

    A Review and Synthesis of the Outcomes from Low Carbon Networks Fund Projects

    Get PDF
    The Low Carbon Networks Fund (LCNF) was established by Ofgem in 2009 with an objective to “help Distribution Network Operators (DNOs) understand how they provide security of supply at value for money and facilitate transition to the low carbon economy”. The £500m fund operated in a tiered format, funding small scale projects as Tier 1 and running a Tier 2 annual competitive process to fund a smaller number of large projects. By 31st March 2015, forty Tier 1 projects and twenty-three Tier 2 projects had been approved with project budgets totalling £29.5m and £220.3m respectively. The LCNF governance arrangements state that projects should focus on the trialling of: new equipment (more specifically, that unproven in GB), novel arrangements or applications of existing equipment, novel operational practices, or novel commercial arrangements. The requirement that learning gained from projects could be disseminated was a key feature of the LCNF. The motivation for the review reported here was a recognition that significant learning and data had been generated from a large volume of project activity but, with so many individual reports published, that it was difficult for outside observers to identify clear messages with respect to the innovations investigated under the programme. This review is therefore intended to identify, categorise and synthesise the learning outcomes published by LCNF projects up to December 2015

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.
    • …
    corecore