2,953 research outputs found

    On the round complexity of black-box constructions of commitments secure against selective opening attacks

    Get PDF
    Selective opening attacks against commitment schemes occur when the commitment scheme is repeated in parallel and an adversary can choose depending on the commit-phase transcript to see the values and openings to some subset of the committed bits. Commitments are secure under such attacks if one can prove that the remaining, unopened commitments stay secret. We prove the following black-box constructions and black-box lower bounds for commitments secure against selective opening attacks for parallel composition: 1. 33 (resp. 44) rounds are necessary to build computationally (resp. statistically) binding and computationally hiding commitments. 2. There is a black-box construction of (t+3)(t+3)-round statistically binding commitments secure against selective opening attacks based on tt-round stand-alone statistically hiding commitments. 3. O(1)O(1)-round statistically-hiding commitments are equivalent to O(1)O(1)-round statistically-binding commitments. Our lower bounds improve upon the parameters obtained by the impossibility results of Bellare \etal{} (EUROCRYPT \u2709), and are proved in a fundamentally different way, by observing that essentially all known impossibility results for black-box zero-knowledge can also be applied to the case of commitments secure against selective opening attacks

    Secure computation under network and physical attacks

    Get PDF
    2011 - 2012This thesis proposes several protocols for achieving secure com- putation under concurrent and physical attacks. Secure computation allows many parties to compute a joint function of their inputs, while keeping the privacy of their input preserved. It is required that the pri- vacy one party's input is preserved even if other parties participating in the protocol collude or deviate from the protocol. In this thesis we focus on concurrent and physical attacks, where adversarial parties try to break the privacy of honest parties by ex- ploiting the network connection or physical weaknesses of the honest parties' machine. In the rst part of the thesis we discuss how to construct proto- cols that are Universally Composable (UC for short) based on physical setup assumptions. We explore the use of Physically Uncloneable Func- tions (PUFs) as setup assumption for achieving UC-secure computa- tions. PUF are physical noisy source of randomness. The use of PUFs in the UC-framework has been proposed already in [14]. However, this work assumes that all PUFs in the system are trusted. This means that, each party has to trust the PUFs generated by the other parties. In this thesis we focus on reducing the trust involved in the use of such PUFs and we introduce the Malicious PUFs model in which only PUFs generated by honest parties are assumed to be trusted. Thus the secu- rity of each party relies on its own PUF only and holds regardless of the goodness of the PUFs generated/used by the adversary. We are able to show that, under this more realistic assumption, one can achieve UC- secure computation, under computational assumptions. Moreover, we show how to achieve unconditional UC-secure commitments with (ma- licious) PUFs and with stateless tamper-proof hardware tokens. We discuss our contribution on this matter in Part I. These results are contained in papers [80] and [28]. In the second part of the thesis we focus on the concurrent setting, and we investigate on protocols achieving round optimality and black- box access to a cryptographic primitive. We study two fundamental functionalities: commitment scheme and zero knowledge, and we focus on some of the round-optimal constructions and lower bounds con- cerning both functionalities. We nd that such constructions present subtle issues. Hence, we provide new protocols that actually achieve the security guarantee promised by previous results. Concerning physical attacks, we consider adversaries able to re- set the machine of the honest party. In a reset attack a machine is forced to run a protocol several times using the same randomness. In this thesis we provide the rst construction of a witness indistinguish- able argument system that is simultaneous resettable and argument of knowledge. We discuss about this contribution in Part III, which is the content of the paper. [edited by author]XI n.s

    Round-Optimal Black-Box Two-Party Computation

    Get PDF
    In [Eurocrypt 2004] Katz and Ostrovsky establish the exact round complexity of secure two-party computation with respect to black-box proofs of security. They prove that 5 rounds are necessary for secure two-party protocols (4-round are sufficient if only one party receives the output) and provide a protocol that matches such lower bound. The main challenge when designing such protocol is to parallelize the proofs of consistency provided by both parties – necessary when security against malicious adversaries is considered– in 4 rounds. Toward this goal they employ specific proofs in which the statement can be unspecified till the last round but that require non-black-box access to the underlying primitives. A rich line of work [IKLP06, Hai08, CDSMW09, IKOS07, PW09] has shown that the non- black-box use of the cryptographic primitive in secure two-party computation is not necessary by providing black-box constructions matching basically all the feasibility results that were previously demonstrated only via non-black-box protocols. All such constructions however are far from being round optimal. The reason is that they are based on cut-and-choose mechanisms where one party can safely take an action only after the other party has successfully completed the cut-and-choose phase, therefore requiring additional rounds. A natural question is whether round-optimal constructions do inherently require non-black- box access to the primitives, and whether the lower bound shown by Katz and Ostrovsky can only be matched by a non-black-box protocol. In this work we show that round-optimality is achievable even with only black-box access to the primitives. We provide the first 4-round black-box oblivious transfer based on any enhanced trapdoor permutation. Plugging a parallel version of our oblivious transfer into the black- box non-interactive secure computation protocol of [IKO+11] we obtain the first round-optimal black-box two-party protocol in the plain model for any functionality

    Trapdoor commitment schemes and their applications

    Get PDF
    Informally, commitment schemes can be described by lockable steely boxes. In the commitment phase, the sender puts a message into the box, locks the box and hands it over to the receiver. On one hand, the receiver does not learn anything about the message. On the other hand, the sender cannot change the message in the box anymore. In the decommitment phase the sender gives the receiver the key, and the receiver then opens the box and retrieves the message. One application of such schemes are digital auctions where each participant places his secret bid into a box and submits it to the auctioneer. In this thesis we investigate trapdoor commitment schemes. Following the abstract viewpoint of lockable boxes, a trapdoor commitment is a box with a tiny secret door. If someone knows the secret door, then this person is still able to change the committed message in the box, even after the commitment phase. Such trapdoors turn out to be very useful for the design of secure cryptographic protocols involving commitment schemes. In the first part of the thesis, we formally introduce trapdoor commitments and extend the notion to identity-based trapdoors, where trapdoors can only be used in connection with certain identities. We then recall the most popular constructions of ordinary trapdoor protocols and present new solutions for identity-based trapdoors. In the second part of the thesis, we show the usefulness of trapdoors in commitment schemes. Deploying trapdoors we construct efficient non-malleable commitment schemes which basically guarantee indepency of commitments. Furthermore, applying (identity-based) trapdoor commitments we secure well-known identification protocols against a new kind of attack. And finally, by means of trapdoors, we show how to construct composable commitment schemes that can be securely executed as subprotocols within complex protocols

    Textbook Non-Malleable Commitments

    Get PDF
    We present a new non-malleable commitment protocol. Our protocol has the following features: \begin​{itemize} \item The protocol has only \emph{three rounds} of interaction. Pass (TCC 2013) showed an impossibility result for a two-round non-malleable commitment scheme w.r.t. a black-box reduction to any ``standard intractability reduction. Thus, this resolves the round complexity of non-malleable commitment at least w.r.t. black-box security reductions. Our construction is secure as per the standard notion of non-malleability w.r.t. commitment. \item Our protocol is \emph{truly efficient}. In our basic protocol, the entire computation of the committer is dominated by just three invocations of a non-interactive statically binding commitment scheme, while, the receiver computation (in the commitment stage) is limited to just sampling a random string. Unlike many previous works, we directly construct a protocol for large tags and hence avoid any non-malleability amplification steps. \item Our protocol makes black-box use of its underlying cryptographic primitives. Previously, the best known black-box construction of non-malleable commitments required a larger (constant) number of rounds. Our basic protocol secure against synchronizing adversaries is based on black-box use of any non-interactive statistically binding commitment (which, in turn, can be based on any one-to-one one-way function). Our extended protocol requires a mildly stronger assumption and more invocations of the underlying non-interactive commitment scheme. \item Our construction is public-coin and makes use of only black-box simulation. Prior to our work, no public-coin constant round non-malleable commitment schemes were known based on black-box simulation. \end{itemize} Our techniques depart \emph{significantly} from the techniques used previously to construct non-malleable commitment schemes. As a main technical tool, we rely on non-malleable codes in the split state model. Our proofs of security are purely combinatorial in nature. In addition, we also present a simple construction of constant round non-malleable commitments from any one-way function. While this result is not new, the main feature is its simplicity compared to \emph{any} previous construction of non-malleable commitments (in any number of rounds). We believe the construction is simple enough to be covered in a graduate level course on cryptography. The construction uses non-malleable codes in the split state model in a black-box way

    The Cryptographic Strength of Tamper-Proof Hardware

    Get PDF
    Tamper-proof hardware has found its way into our everyday life in various forms, be it SIM cards, credit cards or passports. Usually, a cryptographic key is embedded in these hardware tokens that allows the execution of simple cryptographic operations, such as encryption or digital signing. The inherent security guarantees of tamper-proof hardware, however, allow more complex and diverse applications

    Verifiable Relation Sharing and Multi-Verifier Zero-Knowledge in Two Rounds: Trading NIZKs with Honest Majority

    Get PDF
    We introduce the problem of Verifiable Relation Sharing (VRS) where a client (prover) wishes to share a vector of secret data items among kk servers (the verifiers) while proving in zero-knowledge that the shared data satisfies some properties. This combined task of sharing and proving generalizes notions like verifiable secret sharing and zero-knowledge proofs over secret-shared data. We study VRS from a theoretical perspective and focus on its round complexity. As our main contribution, we show that every efficiently-computable relation can be realized by a VRS with an optimal round complexity of two rounds where the first round is input-independent (offline round). The protocol achieves full UC-security against an active adversary that is allowed to corrupt any tt-subset of the parties that may include the client together with some of the verifiers. For a small (logarithmic) number of parties, we achieve an optimal resiliency threshold of t0t0. Both protocols can be based on sub-exponentially hard injective one-way functions. If the parties have an access to a collision resistance hash function, we can derive statistical everlasting security, i.e., the protocols are secure against adversaries that are computationally bounded during the protocol execution and become computationally unbounded after the protocol execution. Previous 2-round solutions achieve smaller resiliency thresholds and weaker security notions regardless of the underlying assumptions. As a special case, our protocols give rise to 2-round offline/online constructions of multi-verifier zero-knowledge proofs (MVZK). Such constructions were previously obtained under the same type of assumptions that are needed for NIZK, i.e., public-key assumptions or random-oracle type assumptions (Abe et al., Asiacrypt 2002; Groth and Ostrovsky, Crypto 2007; Boneh et al., Crypto 2019; Yang, and Wang, Eprint 2022). Our work shows, for the first time, that in the presence of an honest majority these assumptions can be replaced with more conservative ``Minicrypt\u27\u27-type assumptions like injective one-way functions and collision-resistance hash functions. Indeed, our MVZK protocols provide a round-efficient substitute for NIZK in settings where an honest majority is present. Additional applications are also presented

    Unconditionally Secure and Universally Composable Commitments from Physical Assumptions

    Get PDF
    We present a constant-round unconditional black-box compiler that transforms any ideal (i.e., statistically-hiding and statistically-binding) straight-line extractable commitment scheme, into an extractable and equivocal commitment scheme, therefore yielding to UC-security [9]. We exemplify the usefulness of our compiler by providing two (constant-round) instantiations of ideal straight-line extractable commitment based on (malicious) PUFs [36] and stateless tamper-proof hardware tokens [26], therefore achieving the first unconditionally UC-secure commitment with malicious PUFs and stateless tokens, respectively. Our constructions are secure for adversaries creating arbitrarily malicious stateful PUFs/tokens. Previous results with malicious PUFs used either computational assumptions to achieve UC- secure commitments or were unconditionally secure but only in the indistinguishability sense [36]. Similarly, with stateless tokens, UC-secure commitments are known only under computational assumptions [13, 24, 15], while the (not UC) unconditional commitment scheme of [23] is secure only in a weaker model in which the adversary is not allowed to create stateful tokens. Besides allowing us to prove feasibility of unconditional UC-security with (malicious) PUFs and stateless tokens, our compiler can be instantiated with any ideal straight-line extractable commitment scheme, thus allowing the use of various setup assumptions which may better fit the application or the technology available

    The Hunting of the SNARK

    Get PDF
    The existence of succinct non-interactive arguments for NP (i.e., non-interactive computationally-sound proofs where the verifier\u27s work is essentially independent of the complexity of the NP nondeterministic verifier) has been an intriguing question for the past two decades. Other than CS proofs in the random oracle model [Micali, FOCS \u2794], the only existing candidate construction is based on an elaborate assumption that is tailored to a specific protocol [Di Crescenzo and Lipmaa, CiE \u2708]. We formulate a general and relatively natural notion of an \emph{extractable collision-resistant hash function (ECRH)} and show that, if ECRHs exist, then a modified version of Di Crescenzo and Lipmaa\u27s protocol is a succinct non-interactive argument for NP. Furthermore, the modified protocol is actually a succinct non-interactive \emph{adaptive argument of knowledge (SNARK).} We then propose several candidate constructions for ECRHs and relaxations thereof. We demonstrate the applicability of SNARKs to various forms of delegation of computation, to succinct non-interactive zero knowledge arguments, and to succinct two-party secure computation. Finally, we show that SNARKs essentially imply the existence of ECRHs, thus demonstrating the necessity of the assumption. Going beyond \ECRHs, we formulate the notion of {\em extractable one-way functions (\EOWFs)}. Assuming the existence of a natural variant of \EOWFs, we construct a 22-message selective-opening-attack secure commitment scheme and a 3-round zero-knowledge argument of knowledge. Furthermore, if the \EOWFs are concurrently extractable, the 3-round zero-knowledge protocol is also concurrent zero-knowledge. Our constructions circumvent previous black-box impossibility results regarding these protocols by relying on \EOWFs as the non-black-box component in the security reductions

    Knowledge Encryption and Its Applications to Simulatable Protocols With Low Round-Complexity

    Get PDF
    We introduce a new notion of public key encryption, knowledge encryption, for which its ciphertexts can be reduced to the public-key, i.e., any algorithm that can break the ciphertext indistinguishability can be used to extract the (partial) secret key. We show that knowledge encryption can be built solely on any two-round oblivious transfer with game-based security, which are known based on various standard (polynomial-hardness) assumptions, such as the DDH, the Quadratic(NthN^{th}) Residuosity or the LWE assumption. We use knowledge encryption to construct the first three-round (weakly) simulatable oblivious transfer. This protocol satisfies (fully) simulatable security for the receiver, and weakly simulatable security ((T,ϵ)(T, \epsilon)-simulatability) for the sender in the following sense: for any polynomial TT and any inverse polynomial ϵ\epsilon, there exists an efficient simulator such that the distinguishing gap of any distinguisher of size less than TT is at most ϵ\epsilon. Equipped with these tools, we construct a variety of fundamental cryptographic protocols with low round-complexity, assuming only the existence of two-round oblivious transfer with game-based security. These protocols include three-round delayed-input weak zero knowledge argument, three-round weakly secure two-party computation, three-round concurrent weak zero knowledge in the BPK model, and a two-round commitment with weak security under selective opening attack. These results improve upon the assumptions required by the previous constructions. Furthermore, all our protocols enjoy the above (T,ϵ)(T, \epsilon)-simulatability (stronger than the distinguisher-dependent simulatability), and are quasi-polynomial time simulatable under the same (polynomial hardness) assumption
    corecore