765 research outputs found

    Performance Review of Selected Topology-Aware Routing Strategies for Clustering Sensor Networks

    Get PDF
    In this paper, cluster-based routing (CBR) protocols for addressing issues pertinent to energy consumption, network lifespan, resource allocation and network coverage are reviewed. The paper presents an indepth  performance analysis and critical review of selected CBR algorithms. The study is domain-specific and simulation-based with emphasis on the tripartite trade-off between coverage, connectivity and lifespan. The rigorous statistical analysis of selected CBR schemes was also presented. Network simulation was conducted with Java-based Atarraya discrete-event simulation toolkit while statistical analysis was carried out using MATLAB. It was observed that the Periodic, Event-Driven and Query-Based Routing (PEQ) schemes performs better than Low-Energy Adaptive Clustering Hierarchy (LEACH), Threshold-Sensitive Energy-Efficient Sensor Network (TEEN) and Geographic Adaptive Fidelity (GAF) in terms of network lifespan, energy consumption and network throughput.Keywords: Wireless sensor network, Hierarchical topologies, Cluster-based routing, Statistical analysis, Network simulatio

    Data Dissemination in Unified Dynamic Wireless Networks

    Full text link
    We give efficient algorithms for the fundamental problems of Broadcast and Local Broadcast in dynamic wireless networks. We propose a general model of communication which captures and includes both fading models (like SINR) and graph-based models (such as quasi unit disc graphs, bounded-independence graphs, and protocol model). The only requirement is that the nodes can be embedded in a bounded growth quasi-metric, which is the weakest condition known to ensure distributed operability. Both the nodes and the links of the network are dynamic: nodes can come and go, while the signal strength on links can go up or down. The results improve some of the known bounds even in the static setting, including an optimal algorithm for local broadcasting in the SINR model, which is additionally uniform (independent of network size). An essential component is a procedure for balancing contention, which has potentially wide applicability. The results illustrate the importance of carrier sensing, a stock feature of wireless nodes today, which we encapsulate in primitives to better explore its uses and usefulness.Comment: 28 pages, 2 figure

    Lower Bounds for Structuring Unreliable Radio Networks

    Full text link
    In this paper, we study lower bounds for randomized solutions to the maximal independent set (MIS) and connected dominating set (CDS) problems in the dual graph model of radio networks---a generalization of the standard graph-based model that now includes unreliable links controlled by an adversary. We begin by proving that a natural geographic constraint on the network topology is required to solve these problems efficiently (i.e., in time polylogarthmic in the network size). We then prove the importance of the assumption that nodes are provided advance knowledge of their reliable neighbors (i.e, neighbors connected by reliable links). Combined, these results answer an open question by proving that the efficient MIS and CDS algorithms from [Censor-Hillel, PODC 2011] are optimal with respect to their dual graph model assumptions. They also provide insight into what properties of an unreliable network enable efficient local computation.Comment: An extended abstract of this work appears in the 2014 proceedings of the International Symposium on Distributed Computing (DISC

    Intrusion Tolerant Routing Protocols for Wireless Sensor Networks

    Get PDF
    This MSc thesis is focused in the study, solution proposal and experimental evaluation of security solutions for Wireless Sensor Networks (WSNs). The objectives are centered on intrusion tolerant routing services, adapted for the characteristics and requirements of WSN nodes and operation behavior. The main contribution addresses the establishment of pro-active intrusion tolerance properties at the network level, as security mechanisms for the proposal of a reliable and secure routing protocol. Those properties and mechanisms will augment a secure communication base layer supported by light-weigh cryptography methods, to improve the global network resilience capabilities against possible intrusion-attacks on the WSN nodes. Adapting to WSN characteristics, the design of the intended security services also pushes complexity away from resource-poor sensor nodes towards resource-rich and trustable base stations. The devised solution will construct, securely and efficiently, a secure tree-structured routing service for data-dissemination in large scale deployed WSNs. The purpose is to tolerate the damage caused by adversaries modeled according with the Dolev-Yao threat model and ISO X.800 attack typology and framework, or intruders that can compromise maliciously the deployed sensor nodes, injecting, modifying, or blocking packets, jeopardizing the correct behavior of internal network routing processing and topology management. The proposed enhanced mechanisms, as well as the design and implementation of a new intrusiontolerant routing protocol for a large scale WSN are evaluated by simulation. For this purpose, the evaluation is based on a rich simulation environment, modeling networks from hundreds to tens of thousands of wireless sensors, analyzing different dimensions: connectivity conditions, degree-distribution patterns, latency and average short-paths, clustering, reliability metrics and energy cost

    Modeling radio networks

    Get PDF
    We describe a modeling framework and collection of foundational composition results for the study of probabilistic distributed algorithms in synchronous radio networks. Though the radio setting has been studied extensively by the distributed algorithms community, their results rely on informal descriptions of the channel behavior and therefore lack easy comparability and are prone to error caused by definition subtleties. Our framework rectifies these issues by providing: (1) a method to precisely describe a radio channel as a probabilistic automaton; (2) a mathematical notion of implementing one channel using another channel, allowing for direct comparisons of channel strengths and a natural decomposition of problems into implementing a more powerful channel and solving the problem on the powerful channel; (3) a mathematical definition of a problem and solving a problem; (4) a pair of composition results that simplify the tasks of proving properties about channel implementation algorithms and combining problems with channel implementations. Our goal is to produce a model streamlined for the needs of the radio network algorithms community

    Communication in random geometric radio networks with positively correlated random faults

    Get PDF
    We study the feasibility and time of communication in random geometric radio networks, where nodes fail randomly with positive correlation. We consider a set of radio stations with the same communication range, distributed in a random uniform way on a unit square region. In order to capture fault dependencies, we introduce the ranged spot model in which damaging events, called spots, occur randomly and independently on the region, causing faults in all nodes located within distance s from them. Node faults within distance 2s become dependent in this model and are positively correlated. We investigate the impact of the spot arrival rate on the feasibility and the time of communication in the fault-free part of the network. We provide an algorithm which broadcasts correctly with probability 1 - ε in faulty random geometric radio networks of diameter D in time O(D + log1/ε)

    Synchronization protocols and implementation issues in wireless sensor networks: A review

    Get PDF
    Time synchronization in wireless sensor networks (WSNs) is a topic that has been attracting the research community in the last decade. Most performance evaluations of the proposed solutions have been limited to theoretical analysis and simulation. They consequently ignored several practical aspects, e.g., packet handling jitters, clock drifting, packet loss, and mote limitations, which affect real implementation on sensor motes. Authors of some pragmatic solutions followed empirical approaches for the evaluation, where the proposed solutions have been implemented on real motes and evaluated in testbed experiments. This paper gives an insight on issues related to the implementation of synchronization protocols in WSN. The challenges related to WSN environment are presented; the importance of real implementation and testbed evaluation are motivated by some experiments we conducted. The most relevant implementations of the literature are then reviewed, discussed, and qualitatively compared. While there are several survey papers that present and compare the protocols from the conception perspectives, as well as others that deal with mathematical and signal processing issues of the estimators, a survey on practical aspects related to the implementation is missing. To our knowledge, this paper is the first one that takes into account the practical aspect of existing solutions

    The cost of radio network broadcast for different models of unreliable links

    Get PDF
    We study upper and lower bounds for the global and local broadcast problems in the dual graph model combined with different strength adversaries. The dual graph model is a generalization of the standard graph-based radio network model that includes unreliable links controlled by an adversary. It is motivated by the ubiquity of unreliable links in real wireless networks. Existing results in this model [11, 12, 3, 8] assume an offline adaptive adversary - the strongest type of adversary considered in standard randomized analysis. In this paper, we study the two other standard types of adversaries: online adaptive and oblivious. Our goal is to find a model that captures the unpredictable behavior of real networks while still allowing for efficient broadcast solutions. For the online adaptive dual graph model, we prove a lower bound that shows the existence of constant-diameter graphs in which both types of broadcast require Ω(n/ log n) rounds, for network size n. This result is within log-factors of the (near) tight upper bound for the offline adaptive setting. For the oblivious dual graph model, we describe a global broadcast algorithm that solves the problem in O(Dlog n + log[superscript 2] n) rounds for network diameter D, but prove a lower bound of Ω(√n= log n) rounds for local broadcast in this same setting. Finally, under the assumption of geographic constraints on the network graph, we describe a local broadcast algorithm that requires only O(log[superscript 2] n logΔ) rounds in the oblivious model, for maximum degree Δ. In addition to the theoretical interest of these results, we argue that the oblivious model (with geographic constraints) captures enough behavior of real networks to render our efficient algorithms useful for real deployments.Ford Motor Company (University Research Program)United States. Air Force Office of Scientific Research (AFOSR Contract No. FA9550- 13-1-0042)National Science Foundation (U.S.) (NSF Award No. CCF-1217506)National Science Foundation (U.S.) (NSF Award No. 0939370-CCF)National Science Foundation (U.S.) (NSF Award No. CCF-AF-0937274)United States. Air Force Office of Scientific Research (AFOSR Contract No. FA9550-08-1-0159)National Science Foundation (U.S.) (NSF Award No. CCF-072651
    • …
    corecore