4,078 research outputs found

    A Marine Radar Wind Sensor

    Get PDF
    A new method for retrieving the wind vector from radar-image sequences is presented. This method, called WiRAR, uses a marine X-band radar to analyze the backscatter of the ocean surface in space and time with respect to surface winds. Wind direction is found using wind-induced streaks, which are very well aligned with the mean surface wind direction and have a typical spacing above 50 m. Wind speeds are derived using a neural network by parameterizing the relationship between the wind vector and the normalized radar cross section (NRCS). To improve performance, it is also considered how the NRCS depends on sea state and atmospheric parameters such as air–sea temperature and humidity. Since the signal-to-noise ratio in the radar sequences is directly related to the significant wave height, this ratio is used to obtain sea state parameters. All radar datasets were acquired in the German Bight of the North Sea from the research platform FINO-I, which provides environmental data such as wind measurements at different heights, sea state, air–sea temperatures, humidity, and other meteorological and oceanographic parameters. The radar-image sequences were recorded by a marine X-band radar installed aboard FINO-I, which operates at grazing incidence and horizontal polarization in transmit and receive. For validation WiRAR is applied to the radar data and compared to the in situ wind measurements from FINO-I. The comparison of wind directions resulted in a correlation coefficient of 0.99 with a standard deviation of 12.8°, and that of wind speeds resulted in a correlation coefficient of 0.99 with a standard deviation of 0.41 m s^−1. In contrast to traditional offshore wind sensors, the retrieval of the wind vector from the NRCS of the ocean surface makes the system independent of the sensors’ motion and installation height as well as the effects due to platform-induced turbulence

    Temporal stability of soil moisture and radar backscatter observed by the advanced Synthetic Aperture Radar (ASAR)

    Get PDF
    The high spatio-temporal variability of soil moisture is the result of atmospheric forcing and redistribution processes related to terrain, soil, and vegetation characteristics. Despite this high variability, many field studies have shown that in the temporal domain soil moisture measured at specific locations is correlated to the mean soil moisture content over an area. Since the measurements taken by Synthetic Aperture Radar (SAR) instruments are very sensitive to soil moisture it is hypothesized that the temporally stable soil moisture patterns are reflected in the radar backscatter measurements. To verify this hypothesis 73 Wide Swath (WS) images have been acquired by the ENVISAT Advanced Synthetic Aperture Radar (ASAR) over the REMEDHUS soil moisture network located in the Duero basin, Spain. It is found that a time-invariant linear relationship is well suited for relating local scale (pixel) and regional scale (50 km) backscatter. The observed linear model coefficients can be estimated by considering the scattering properties of the terrain and vegetation and the soil moisture scaling properties. For both linear model coefficients, the relative error between observed and modelled values is less than 5 % and the coefficient of determination (R-2) is 86 %. The results are of relevance for interpreting and downscaling coarse resolution soil moisture data retrieved from active (METOP ASCAT) and passive (SMOS, AMSR-E) instruments

    Empirical fitting of forward backscattering models for multitemporal retrieval of soil moisture from radar data at L-band

    Get PDF
    A multitemporal algorithm, originally conceived for the C-band radar aboard the Sentinel-1 satellite, has been updated to retrieve soil moisture from L-band radar data, such as those provided by the National Aeronautics and Space Administration Soil Moisture Active/Passive (SMAP) mission. This type of algorithm may deliver more accurate soil moisture maps that mitigate the effect of roughness and vegetation changes. Within the multitemporal inversion scheme based on the Bayesian maximum a posteriori probability (MAP) criterion, a dense time series of radar measurements is integrated to invert a forward backscattering model. The model calibration and validation tasks have been accomplished using the data collected during the SMAP validation experiment 12 spanning several soil conditions (pasture, wheat, corn, and soybean). The data have been used to update the forward model for bare soil scattering at L-band and to tune a simple vegetation scattering model considering two different classes of vegetation: those producing mainly single scattering effects and those characterized by a significant multiple scattering involving terrain surface and vegetation elements interaction. The algorithm retrievals showed a root mean square difference (RMSD) around 5% over bare soil, soybean, and cornfields. As for wheat, a bias was observed; when removed, the RMSD went down from 7.7% to 5%

    FIREX mission requirements document for renewable resources

    Get PDF
    The initial experimental program and mission requirements for a satellite synthetic aperture radar (SAR) system FIREX (Free-Flying Imaging Radar Experiment) for renewable resources is described. The spacecraft SAR is a C-band and L-band VV polarized system operating at two angles of incidence which is designated as a research instrument for crop identification, crop canopy condition assessments, soil moisture condition estimation, forestry type and condition assessments, snow water equivalent and snow wetness assessments, wetland and coastal land type identification and mapping, flood extent mapping, and assessment of drainage characteristics of watersheds for water resources applications. Specific mission design issues such as the preferred incidence angles for vegetation canopy measurements and the utility of a dual frequency (L and C-band) or dual polarization system as compared to the baseline system are addressed

    Satellite observations of mesoscale features in lower Cook Inlet and Shelikof Strait, Gulf of Alaska

    Get PDF
    The Seasat satellite launched in Summer 1978 carried a synthetic aperture radar (SAR). Although Seasat failed after 105 days in orbit, it provided observations that demonstrate the potential to examine and monitor upper oceanic processes. Seasat made five passes over lower Cook Inlet and Shelikof Strait, Alaska, during Summer 1978. SAR images from the passes show oceanographic features, including a meander in a front, a pair of mesoscale eddies, and internal waves. These features are compared with contemporary and representative images from a satellite-borne Advanced Very High Resolution Radiometer (AVHRR) and Coastal Zone Color Scanner (CZCS), with water property data, and with current observations from moored instruments. The results indicate that SAR data can be used to monitor mesoscale oceanographic features

    Evaluation of the soil moisture prediction accuracy of a space radar using simulation techniques

    Get PDF
    Image simulation techniques were employed to generate synthetic aperture radar images of a 17.7 km x 19.3 km test site located east of Lawrence, Kansas. The simulations were performed for a space SAR at an orbital altitude of 600 km, with the following sensor parameters: frequency = 4.75 GHz, polarization = HH, and angle of incidence range = 7 deg to 22 deg from nadir. Three sets of images were produced corresponding to three different spatial resolutions; 20 m x 20 m with 12 looks, 100 m x 100 m with 23 looks, and 1 km x 1 km with 1000 looks. Each set consisted of images for four different soil moisture distributions across the test site. Results indicate that, for the agricultural portion of the test site, the soil moisture in about 90% of the pixels can be predicted with an accuracy of = + or - 20% of field capacity. Among the three spatial resolutions, the 1 km x 1 km resolution gave the best results for most cases, however, for very dry soil conditions, the 100 m x 100 m resolution was slightly superior

    Cryosphere Applications

    Get PDF
    Synthetic aperture radar (SAR) provides large coverage and high resolution, and it has been proven to be sensitive to both surface and near-surface features related to accumulation, ablation, and metamorphism of snow and firn. Exploiting this sensitivity, SAR polarimetry and polarimetric interferometry found application to land ice for instance for the estimation of wave extinction (which relates to sub surface ice volume structure) and for the estimation of snow water equivalent (which relates to snow density and depth). After presenting these applications, the Chapter proceeds by reviewing applications of SAR polarimetry to sea ice for the classification of different ice types, the estimation of thickness, and the characterisation of its surface. Finally, an application to the characterisation of permafrost regions is considered. For each application, the used (model-based) decomposition and polarimetric parameters are critically described, and real data results from relevant airborne campaigns and space borne acquisitions are reported

    Active microwave users working group program planning

    Get PDF
    A detailed programmatic and technical development plan for active microwave technology was examined in each of four user activities: (1) vegetation; (2) water resources and geologic applications, and (4) oceanographic applications. Major application areas were identified, and the impact of each application area in terms of social and economic gains were evaluated. The present state of knowledge of the applicability of active microwave remote sensing to each application area was summarized and its role relative to other remote sensing devices was examined. The analysis and data acquisition techniques needed to resolve the effects of interference factors were reviewed to establish an operational capability in each application area. Flow charts of accomplished and required activities in each application area that lead to operational capability were structured
    • …
    corecore