13,348 research outputs found

    Informatics and Computer Science Roughness of a Fuzzy Set

    Get PDF
    An integration between the theories of fuzzy sets and rough sets has been attempted by providing a measure of roughness of a fuzzy set. Several properties of this new measure are established. Some of the possible applications for handling uncertainties in the field of pattern recognition are mentioned. 1

    Surface roughness modeling of CBN hard steel turning

    Get PDF
    Study in the paper investigate the influence of the cutting conditions parameters on surface roughness parameters during turning of hard steel with cubic boron nitrite cutting tool insert. For the modeling of surface roughness parameters was used central compositional design of experiment and artificial neural network as well. The values of surface roughness parameters Average mean arithmetic surface roughness (Ra) and Maximal surface roughness (Rmax) were predicted by this two-modeling methodology and determined models were then compared. The results showed that the proposed systems can significantly increase the accuracy of the product profile when compared to the conventional approaches. The results indicate that the design of experiments modeling technique and artificial neural network can be effectively used for the prediction of the surface roughness parameters of hard steel and determined significantly influential cutting conditions parameters

    Linear Diophantine Fuzzy Rough Sets: A New Rough Set Approach with Decision Making

    Get PDF
    In this article, a new hybrid model named linear Diophantine fuzzy rough set (LDFRS) is proposed to magnify the notion of rough set (RS) and linear Diophantine fuzzy set (LDFS). Concerning the proposed model of LDFRS, it is more efficient to discuss the fuzziness and roughness in terms of linear Diophantine fuzzy approximation spaces (LDFA spaces); it plays a vital role in information analysis, data analysis, and computational intelligence. The concept of (,)-indiscernibility of a linear Diophantine fuzzy relation (LDF relation) is used for the construction of an LDFRS. Certain properties of LDFA spaces are explored and related results are developed. Moreover, a decision-making technique is developed for modeling uncertainties in decision-making (DM) problems and a practical application of fuzziness and roughness of the proposed model is established for medical diagnosis

    Improved approximation of arbitrary shapes in dem simulations with multi-spheres

    Get PDF
    DEM simulations are originally made for spherical particles only. But most of real particles are anything but not spherical. Due to this problem, the multi-sphere method was invented. It provides the possibility to clump several spheres together to create complex shape structures. The proposed algorithm offers a novel method to create multi-sphere clumps for the given arbitrary shapes. Especially the use of modern clustering algorithms, from the field of computational intelligence, achieve satisfactory results. The clustering is embedded into an optimisation algorithm which uses a pre-defined criterion. A mostly unaided algorithm with only a few input and hyperparameters is able to approximate arbitrary shapes

    Fuzzy Techniques for Decision Making 2018

    Get PDF
    Zadeh's fuzzy set theory incorporates the impreciseness of data and evaluations, by imputting the degrees by which each object belongs to a set. Its success fostered theories that codify the subjectivity, uncertainty, imprecision, or roughness of the evaluations. Their rationale is to produce new flexible methodologies in order to model a variety of concrete decision problems more realistically. This Special Issue garners contributions addressing novel tools, techniques and methodologies for decision making (inclusive of both individual and group, single- or multi-criteria decision making) in the context of these theories. It contains 38 research articles that contribute to a variety of setups that combine fuzziness, hesitancy, roughness, covering sets, and linguistic approaches. Their ranges vary from fundamental or technical to applied approaches

    A Fuzzy Logic based Model to Predict the Improvement in Surface Roughness in Magnetic Field Assisted Abrasive Finishing

    Get PDF
    AbstractIn this paper the effect of process parameters during Magnetic Field Assisted Abrasive Micro Finishing (MFAAF) of SS316L material is reported. Based on the experimental results obtained, S/N ratio and ANOVA analyses were made to identify the significant process parameters to improve the percentage improvement of surface roughness (%ΔRa). From the results it is observed that the process parameters like voltage applied to the electromagnet, machining gap, rotational speed of electromagnet followed by abrasive size are significant to improve the %ΔRa. Based on the process parameters selected from the S/N ratio analysis and ANOVA analysis, a fuzzy logic model has been developed to predict the %ΔRa. To develop the fuzzy model, four membership functions based on the four process parameters are assigned to be connected with each input of the model. The developed fuzzy model is tested using three different set of process parameters values that are not used in already existing experimental data set. It is found that the developed fuzzy model has a close relation with the experimental values with the maximum deviations of 7.16%
    corecore