4,422 research outputs found

    GNSS transpolar earth reflectometry exploriNg system (G-TERN): mission concept

    Get PDF
    The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a “dynamic mapper”of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (<;10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance.Peer ReviewedPostprint (published version

    Radio-Echo Sounding Over Polar Ice Masses

    Get PDF
    Peer reviewedPublisher PD

    Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. Part 1: single and dual pass cells

    Get PDF
    New designs for gas cells are presented that incorporate transmissive or reflective optical diffusers. These components offer simple alignment and can disrupt the formation of optical etalons. We analyse the performance-limiting effects in these cells of random laser speckle (both objective and subjective speckle), interferometric speckle and self-mixing interference, and show how designs can be optimised. A simple, single pass transmissive gas cell has been studied using wavelength modulation spectroscopy to measure methane at 1651 nm. We have demonstrated a short-term noise equivalent absorbance (NEA, 1 sigma) of 2x10(-5), but longer term drift of up to 3x10(-4) over 22 hours

    Hemispherical-Directional Reflectance (HDRF) of Windblown Snow-Covered Arctic Tundra at Large Solar Zenith Angles

    Get PDF
    Ground-based measurements of the hemispherical-directional reflectance factor (HDRF) of windblown snowcovered Arctic tundra were measured at large solar zenith angles (79◦–85◦) for six sites near the international research base in Ny-Ålesund, Svalbard. Measurements were made with the Gonio RAdiometric Spectrometer System over the viewing angles 0◦–50◦ and the azimuth angles 0◦–360◦, for the wavelength range 400–1700 nm. The HDRF measurements showed good consistency between sites for near-nadir and backward viewing angles, with a relative standard deviation of less than 10% between sites where the snowpack was smooth and the snow depth was greater than 40 cm. The averaged HDRF showed good symmetry with respect to the solar principal plane and exhibited a forward scattering peak that was strongly wavelength dependent, with greater than a factor of 2 increase in the ratio of maximum to minimum HDRF values for all viewing angles over the wavelength range 400– 1300 nm. The angular effects on the HDRF had minimal influence for viewing angles less than 15◦ in the backward viewing direction for the averaged sites and agreed well with another study of snow HDRF for infrared wavelengths, but showed differences of up to 0.24 in the HDRF for visible wavelengths owing to light-absorbing impurities measured in the snowpack. The site that had the largest roughness elements showed the strongest anisotropy in the HDRF, a large reduction in forward scattering, and a strong asymmetry with respect to the solar principal plane

    Large Deployable Reflector (LDR) system concept and technology definition study. Volume 2: Technology assessment and technology development plan

    Get PDF
    A study was conducted to define reasonable and representative LDR system concepts for the purpose of defining a technology development program aimed at providing the requisite technological capability necessary to start LDR development by the end of 1991. This volume presents thirteen technology assessments and technology development plans, as well as an overview and summary of the LDR concepts. Twenty-two proposed augmentation projects are described (selected from more than 30 candidates). The five LDR technology areas most in need of supplementary support are: cryogenic cooling; astronaut assembly of the optically precise LDR in space; active segmented primary mirror; dynamic structural control; and primary mirror contamination control. Three broad, time-phased, five-year programs were synthesized from the 22 projects, scheduled, and funding requirements estimated

    The microwave radiometer spacecraft: A design study

    Get PDF
    A large passive microwave radiometer spacecraft with near all weather capability of monitoring soil moisture for global crop forecasting was designed. The design, emphasizing large space structures technology, characterized the mission hardware at the conceptual level in sufficient detail to identify enabling and pacing technologies. Mission and spacecraft requirements, design and structural concepts, electromagnetic concepts, and control concepts are addressed
    • …
    corecore