10,032 research outputs found

    Uncertainty Management of Intelligent Feature Selection in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSN) are envisioned to revolutionize the paradigm of monitoring complex real-world systems at a very high resolution. However, the deployment of a large number of unattended sensor nodes in hostile environments, frequent changes of environment dynamics, and severe resource constraints pose uncertainties and limit the potential use of WSN in complex real-world applications. Although uncertainty management in Artificial Intelligence (AI) is well developed and well investigated, its implications in wireless sensor environments are inadequately addressed. This dissertation addresses uncertainty management issues of spatio-temporal patterns generated from sensor data. It provides a framework for characterizing spatio-temporal pattern in WSN. Using rough set theory and temporal reasoning a novel formalism has been developed to characterize and quantify the uncertainties in predicting spatio-temporal patterns from sensor data. This research also uncovers the trade-off among the uncertainty measures, which can be used to develop a multi-objective optimization model for real-time decision making in sensor data aggregation and samplin

    Approximation-based feature selection and application for algae population estimation

    Get PDF
    This paper presents a data-driven approach for feature selection to address the common problem of dealing with high-dimensional data. This approach is able to handle the real-valued nature of the domain features, unlike many existing approaches. This is accomplished through the use of fuzzy-rough approximations. The paper demonstrates the effectiveness of this research by proposing an estimator of algae populations, a system that approximates, given certain water characteristics, the size of algae populations. This estimator significantly reduces computer time and space requirements, decreases the cost of obtaining measurements and increases runtime efficiency, making itself more viable economically. By retaining only information required for the estimation task, the system offers higher accuracy than conventional estimators. Finally, the system does not alter the domain semantics, making any distilled knowledge human-readable. The paper describes the problem domain, architecture and operation of the system, and provides and discusses detailed experimentation. The results show that algae estimators using a fuzzy-rough feature selection step produce more accurate predictions of algae populations in general. Keywords Feature evaluation and selection; Data-driven knowledge acquisition; Classification; Fuzzy-rough sets; Algae population estimation.

    Concept learning consistency under three‑way decision paradigm

    Get PDF
    Concept Mining is one of the main challenges both in Cognitive Computing and in Machine Learning. The ongoing improvement of solutions to address this issue raises the need to analyze whether the consistency of the learning process is preserved. This paper addresses a particular problem, namely, how the concept mining capability changes under the reconsideration of the hypothesis class. The issue will be raised from the point of view of the so-called Three-Way Decision (3WD) paradigm. The paradigm provides a sound framework to reconsider decision-making processes, including those assisted by Machine Learning. Thus, the paper aims to analyze the influence of 3WD techniques in the Concept Learning Process itself. For this purpose, we introduce new versions of the Vapnik-Chervonenkis dimension. Likewise, to illustrate how the formal approach can be instantiated in a particular model, the case of concept learning in (Fuzzy) Formal Concept Analysis is considered.This work is supported by State Investigation Agency (Agencia Estatal de Investigación), project PID2019-109152GB-100/AEI/10.13039/501100011033. We acknowledge the reviewers for their suggestions and guidance on additional references that have enriched our paper. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature

    Fuzzy Sets and Rough Sets for Scenario Modelling and Analysis

    Get PDF

    Identifying Non-Sublattice Equivalence Classes Induced by an Attribute Reduction in FCA

    Get PDF
    The detection of redundant or irrelevant variables (attributes) in datasets becomes essential in different frameworks, such as in Formal Concept Analysis (FCA). However, removing such variables can have some impact on the concept lattice, which is closely related to the algebraic structure of the obtained quotient set and their classes. This paper studies the algebraic structure of the induced equivalence classes and characterizes those classes that are convex sublattices of the original concept lattice. Particular attention is given to the reductions removing FCA's unnecessary attributes. The obtained results will be useful to other complementary reduction techniques, such as the recently introduced procedure based on local congruences

    Analysing Questionnaires on IT Project Status - Complexity Reduction by the Application of Rough Concepts

    Get PDF
    Since its introduction half a century ago IT has become one of the most important infrastructure components of virtually any organisation. An important key area of qualitative research in information systems is interviewing decision makers. These interviews aim to disclose hidden structures within IT projects and usage to increase their efficiency and effectiveness. In this context, the definition and analysis of critical success factors for information technology projects are well established areas for qualitative research in information systems. The analysis of critical success factors is of special importance since the IT projects still suffer from high failures rates. Therefore it is an important research goal within information systems to better understand IT projects to improve their success rates. The interviews of critical success factors provide a good data basis to disclose hidden structures in this domain. Besides only quantitatively interpreting such interviews the analysis can be enriched by some qualitative methods to support quantitative analysis and may disclose formerly hidden structures within the data. Therefore the objective of the paper is to enrich the analysis of IT projects and evaluate rough sets based quantitative analysis techniques for symbolic data which are characteristic in the domain of critical success factors analysis

    A Recursive Bateson-Inspired Model for the Generation of Semantic Formal Concepts from Spatial Sensory Data

    Full text link
    Neural-symbolic approaches to machine learning incorporate the advantages from both connectionist and symbolic methods. Typically, these models employ a first module based on a neural architecture to extract features from complex data. Then, these features are processed as symbols by a symbolic engine that provides reasoning, concept structures, composability, better generalization and out-of-distribution learning among other possibilities. However, neural approaches to the grounding of symbols in sensory data, albeit powerful, still require heavy training and tedious labeling for the most part. This paper presents a new symbolic-only method for the generation of hierarchical concept structures from complex spatial sensory data. The approach is based on Bateson's notion of difference as the key to the genesis of an idea or a concept. Following his suggestion, the model extracts atomic features from raw data by computing elemental sequential comparisons in a stream of multivariate numerical values. Higher-level constructs are built from these features by subjecting them to further comparisons in a recursive process. At any stage in the recursion, a concept structure may be obtained from these constructs and features by means of Formal Concept Analysis. Results show that the model is able to produce fairly rich yet human-readable conceptual representations without training. Additionally, the concept structures obtained through the model (i) present high composability, which potentially enables the generation of 'unseen' concepts, (ii) allow formal reasoning, and (iii) have inherent abilities for generalization and out-of-distribution learning. Consequently, this method may offer an interesting angle to current neural-symbolic research. Future work is required to develop a training methodology so that the model can be tested against a larger dataset
    corecore