1,821 research outputs found

    Multimodal image analysis of the human brain

    Get PDF
    Gedurende de laatste decennia heeft de snelle ontwikkeling van multi-modale en niet-invasieve hersenbeeldvorming technologieën een revolutie teweeg gebracht in de mogelijkheid om de structuur en functionaliteit van de hersens te bestuderen. Er is grote vooruitgang geboekt in het beoordelen van hersenschade door gebruik te maken van Magnetic Reconance Imaging (MRI), terwijl Elektroencefalografie (EEG) beschouwd wordt als de gouden standaard voor diagnose van neurologische afwijkingen. In deze thesis focussen we op de ontwikkeling van nieuwe technieken voor multi-modale beeldanalyse van het menselijke brein, waaronder MRI segmentatie en EEG bronlokalisatie. Hierdoor voegen we theorie en praktijk samen waarbij we focussen op twee medische applicaties: (1) automatische 3D MRI segmentatie van de volwassen hersens en (2) multi-modale EEG-MRI data analyse van de hersens van een pasgeborene met perinatale hersenschade. We besteden veel aandacht aan de verbetering en ontwikkeling van nieuwe methoden voor accurate en ruisrobuuste beeldsegmentatie, dewelke daarna succesvol gebruikt worden voor de segmentatie van hersens in MRI van zowel volwassen als pasgeborenen. Daarenboven ontwikkelden we een geïntegreerd multi-modaal methode voor de EEG bronlokalisatie in de hersenen van een pasgeborene. Deze lokalisatie wordt gebruikt voor de vergelijkende studie tussen een EEG aanval bij pasgeborenen en acute perinatale hersenletsels zichtbaar in MRI

    Optimizing Magnetic Resonance Imaging for Image-Guided Radiotherapy

    Full text link
    Magnetic resonance imaging (MRI) is playing an increasingly important role in image-guided radiotherapy. MRI provides excellent soft tissue contrast, and is flexible in characterizing various tissue properties including relaxation, diffusion and perfusion. This thesis aims at developing new image analysis and reconstruction algorithms to optimize MRI in support of treatment planning, target delineation and treatment response assessment for radiotherapy. First, unlike Computed Tomography (CT) images, MRI cannot provide electron density information necessary for radiation dose calculation. To address this, we developed a synthetic CT generation algorithm that generates pseudo CT images from MRI, based on tissue classification results on MRI for female pelvic patients. To improve tissue classification accuracy, we learnt a pelvic bone shape model from a training dataset, and integrated the shape model into an intensity-based fuzzy c-menas classification scheme. The shape-regularized tissue classification algorithm is capable of differentiating tissues that have significant overlap in MRI intensity distributions. Treatment planning dose calculations using synthetic CT image volumes generated from the tissue classification results show acceptably small variations as compared to CT volumes. As MRI artifacts, such as B1 filed inhomogeneity (bias field) may negatively impact the tissue classification accuracy, we also developed an algorithm that integrates the correction of bias field into the tissue classification scheme. We modified the fuzzy c-means classification by modeling the image intensity as the true intensity corrupted by the multiplicative bias field. A regularization term further ensures the smoothness of the bias field. We solved the optimization problem using a linearized alternating direction method of multipliers (ADMM) method, which is more computational efficient over existing methods. The second part of this thesis looks at a special MR imaging technique, diffusion-weighted MRI (DWI). By acquiring a series of DWI images with a wide range of b-values, high order diffusion analysis can be performed using the DWI image series and new biomarkers for tumor grading, delineation and treatment response evaluation may be extracted. However, DWI suffers from low signal-to-noise ratio at high b-values, and the multi-b-value acquisition makes the total scan time impractical for clinical use. In this thesis, we proposed an accelerated DWI scheme, that sparsely samples k-space and reconstructs images using a model-based algorithm. Specifically, we built a 3D block-Hankel tensor from k-space samples, and modeled both local and global correlations of the high dimensional k-space data as a low-rank property of the tensor. We also added a phase constraint to account for large phase variations across different b-values, and to allow reconstruction from partial Fourier acquisition, which further accelerates the image acquisition. We proposed an ADMM algorithm to solve the constrained image reconstruction problem. Image reconstructions using both simulated and patient data show improved signal-to-noise ratio. As compared to clinically used parallel imaging scheme which achieves a 4-fold acceleration, our method achieves an 8-fold acceleration. Reconstructed images show reduced reconstruction errors as proved on simulated data and similar diffusion parameter mapping results on patient data.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143919/1/llliu_1.pd

    Longitudinal MRI studies of brain morphometry

    Get PDF

    Implicit deformable models for biomedical image segmentation.

    Get PDF
    In this thesis, new methods for the efficient segmentation of images are presented. The proposed methods are based on the deformable model approach, and can be used efficiently in the segmentation of complex geometries from various imaging modalities. A novel deformable model that is based on a geometrically induced external force field which can be conveniently generalized to arbitrary dimensions is presented. This external force field is based on hypothesized interactions between the relative geometries of the deformable model and the object boundary characterized by image gradient. The evolution of the deformable model is solved using the level set method so that topological changes are handled automatically. The relative geometrical configurations between the deformable model and the object boundaries contributes to a dynamic vector force field that changes accordingly as the deformable model evolves. The geometrically induced dynamic interaction force has been shown to greatly improve the deformable model performance in acquiring complex geometries and highly concave boundaries, and give the deformable model a high invariance in initialization configurations. The voxel interactions across the whole image domain provides a global view of the object boundary representation, giving the external force a long attraction range. The bidirectionality of the external force held allows the new deformable model to deal with arbitrary cross-boundary initializations, and facilitates the handling of weak edges and broken boundaries. In addition, it is shown that by enhancing the geometrical interaction field with a nonlocal edge-preserving algorithm, the new deformable model can effectively overcome image noise. A comparative study on the segmentation of various geometries with different topologies from both synthetic and real images is provided, and the proposed method is shown to achieve significant improvements against several existing techniques. A robust framework for the segmentation of vascular geometries is described. In particular, the framework consists of image denoising, optimal object edge representation, and segmentation using implicit deformable model. The image denoising is based on vessel enhancing diffusion which can be used to smooth out image noise and enhance the vessel structures. The image object boundaries are derived using an edge detection technique which can produce object edges of single pixel width. The image edge information is then used to derive the geometric interaction field for optimal object edge representation. The vascular geometries are segmented using an implict deformable model. A region constraint is added to the deformable model which allows it to easily get around calcified regions and propagate across the vessels to segment the structures efficiently. The presented framework is ai)plied in the accurate segmentation of carotid geometries from medical images. A new segmentation model with statistical shape prior using a variational approach is also presented in this thesis. The proposed model consists of an image attraction force that propagates contours towards image object boundaries, and a global shape force that attracts the model towards similar shapes in the statistical shape distribution. The image attraction force is derived from gradient vector interactions across the whole image domain, which makes the model more robust to image noise, weak edges and initializations. The statistical shape information is incorporated using kernel density estimation, which allows the shape prior model to handle arbitrary shape variations. It is shown that the proposed model with shape prior can be used to segment object shapes from images efficiently

    Computer aided analysis of inflammatory muscle disease using magnetic resonance imaging

    Get PDF
    Inflammatory muscle disease (myositis) is characterised by inflammation and a gradual increase in muscle weakness. Diagnosis typically requires a range of clinical tests, including magnetic resonance imaging of the thigh muscles to assess the disease severity. In the past, this has been measured by manually counting the number of muscles affected. In this work, a computer-aided analysis of inflammatory muscle disease is presented to help doctors diagnose and monitor the disease. Methods to quantify the level of oedema and fat infiltration from magnetic resonance scans are proposed and the disease quantities determined are shown to have positive correlation against expert medical opinion. The methods have been designed and tested on a database of clinically acquired T1 and STIR sequences, and are proven to be robust despite suboptimal image quality. General background information is first introduced, giving an overview of the medical, technical, and theoretical topics necessary to understand the problem domain. Next, a detailed introduction to the physics of magnetic resonance imaging is given. A review of important literature from similar and related domains is presented, with valuable insights that are utilised at a later stage. Scans are carefully pre-processed to bring all slices in to a common frame of reference and the methods to quantify the level of oedema and fat infiltration are defined and shown to have good positive correlation with expert medical opinion. A number of validation tests are performed with re-scanned subjects to indicate the level of repeatability. The disease quantities, together with statistical features from the T1-STIR joint histogram, are used for automatic classification of the disease severity. Automatic classification is shown to be successful on out of sample data for both the oedema and fat infiltration problems

    An MRI Segmentation Framework for Brains with Anatomical Deviations

    Get PDF
    The segmentation of brain Magnetic Resonance (MR) images, where the brain is partitioned into anatomical regions of interest, is a notoriously difficult problem when the underlying brain structures are influenced by pathology or are undergoing rapid development. This dissertation proposes a new automatic segmentation method for brain MRI that makes use of a model of a homogeneous population to detect anatomical deviations. The chosen population model is a brain atlas created by averaging a set of MR images and the corresponding segmentations. The segmentation method is an integration of robust parameter estimation techniques and the Expectation-Maximization algorithm. In clinical applications, the segmentation of brains with anatomical deviations from those commonly observed within a homogeneous population is of particular interest. One example is provided by brain tumors, since delineation of the tumor and of any surrounding edema is often critical for treatment planning. A second example is provided by the dynamic brain changes that occur in newborns, since study of these changes may generate insights into regional growth trajectories and maturation patterns. Brain tumor and edema can be considered as anatomical deviations from a healthy adult population, whereas the rapid growth of newborn brains can be considered as an anatomical deviation from a population of fully developed infant brains. A fundamental task associated with image segmentation is the validation of segmentation accuracy. In cases in which the brain deviates from standard anatomy, validation is often an ill-defined task since there is no knowledge of the ground truth (information about the actual structures observed through MRI). This dissertation presents a new method of simulating ground truth with pathology that facilitates objective validation of brain tumor segmentations. The simulation method generates realistic-appearing tumors within the MRI of a healthy subject. Since the location, shape, and volume of the synthetic tumors are known with certainty, the simulated MRI can be used to objectively evaluate the accuracy of any brain tumor segmentation method

    Algorithmic Analysis Techniques for Molecular Imaging

    Get PDF
    This study addresses image processing techniques for two medical imaging modalities: Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI), which can be used in studies of human body functions and anatomy in a non-invasive manner. In PET, the so-called Partial Volume Effect (PVE) is caused by low spatial resolution of the modality. The efficiency of a set of PVE-correction methods is evaluated in the present study. These methods use information about tissue borders which have been acquired with the MRI technique. As another technique, a novel method is proposed for MRI brain image segmen- tation. A standard way of brain MRI is to use spatial prior information in image segmentation. While this works for adults and healthy neonates, the large variations in premature infants preclude its direct application. The proposed technique can be applied to both healthy and non-healthy premature infant brain MR images. Diffusion Weighted Imaging (DWI) is a MRI-based technique that can be used to create images for measuring physiological properties of cells on the structural level. We optimise the scanning parameters of DWI so that the required acquisition time can be reduced while still maintaining good image quality. In the present work, PVE correction methods, and physiological DWI models are evaluated in terms of repeatabilityof the results. This gives in- formation on the reliability of the measures given by the methods. The evaluations are done using physical phantom objects, correlation measure- ments against expert segmentations, computer simulations with realistic noise modelling, and with repeated measurements conducted on real pa- tients. In PET, the applicability and selection of a suitable partial volume correction method was found to depend on the target application. For MRI, the data-driven segmentation offers an alternative when using spatial prior is not feasible. For DWI, the distribution of b-values turns out to be a central factor affecting the time-quality ratio of the DWI acquisition. An optimal b-value distribution was determined. This helps to shorten the imaging time without hampering the diagnostic accuracy.Siirretty Doriast
    • …
    corecore