8,534 research outputs found

    Nontrivial temporal scaling in a Galilean stick-slip dynamics

    Full text link
    We examine the stick-slip fluctuating response of a rough massive non-rotating cylinder moving on a rough inclined groove which is submitted to weak external perturbations and which is maintained well below the angle of repose. The experiments presented here, which are reminiscent of the Galileo's works with rolling objects on inclines, have brought in the last years important new insights into the friction between surfaces in relative motion and are of relevance for earthquakes, differing from classical block-spring models by the mechanism of energy input in the system. Robust nontrivial temporal scaling laws appearing in the dynamics of this system are reported, and it is shown that the time-support where dissipation occurs approaches a statistical fractal set with a fixed value of dimension. The distribution of periods of inactivity in the intermittent motion of the cylinder is also studied and found to be closely related to the lacunarity of a random version of the classic triadic Cantor set on the line.Comment: 7 pages including 6 figure

    Granular Pressure and the Thickness of a Layer Jamming on a Rough Incline

    Full text link
    Dense granular media have a compaction between the random loose and random close packings. For these dense media the concept of a granular pressure depending on compaction is not unanimously accepted because they are often in a "frozen" state which prevents them to explore all their possible microstates, a necessary condition for defining a pressure and a compressibility unambiguously. While periodic tapping or cyclic fluidization have already being used for that exploration, we here suggest that a succession of flowing states with velocities slowly decreasing down to zero can also be used for that purpose. And we propose to deduce the pressure in \emph{dense and flowing} granular media from experiments measuring the thickness of the granular layer that remains on a rough incline just after the flow has stopped.Comment: 10 pages, 2 figure

    Inclined Surface Locomotion Strategies for Spherical Tensegrity Robots

    Full text link
    This paper presents a new teleoperated spherical tensegrity robot capable of performing locomotion on steep inclined surfaces. With a novel control scheme centered around the simultaneous actuation of multiple cables, the robot demonstrates robust climbing on inclined surfaces in hardware experiments and speeds significantly faster than previous spherical tensegrity models. This robot is an improvement over other iterations in the TT-series and the first tensegrity to achieve reliable locomotion on inclined surfaces of up to 24\degree. We analyze locomotion in simulation and hardware under single and multi-cable actuation, and introduce two novel multi-cable actuation policies, suited for steep incline climbing and speed, respectively. We propose compelling justifications for the increased dynamic ability of the robot and motivate development of optimization algorithms able to take advantage of the robot's increased control authority.Comment: 6 pages, 11 figures, IROS 201

    Evidence of reverse and intermediate size segregation in dry granular flows down a rough incline

    Full text link
    In a dry granular flow, size segregation behave differently for a mixture containing a few large beads with a size ratio (S) above 5 (Thomas, Phys.Rev.E 62,96(2000)). For moderate large S, large beads migrate to an intermediate depth in the bed: this is called intermediate segregation. For the largest S, large beads migrate to the bottom: this is called reverse segregation (in contrast with surface segregation). As the reversal and intermediate depth values depend on the bead fraction, this numerical study mainly uses a single large tracer. Small fractions are also computed showing the link between a tracer behavior and segregation process. For half-filled rotating drum and for rough incline, two and three (3D) dimensional cases are studied. In the tumbler, trajectories of a large tracer show that it reaches a constant depth during the flow. For large S, this depth is intermediate with a progressive sinking when S increases. Largest S correspond to tracers at the bottom of the flow. All 3D simulation are in quantitative agreement with the experiments. In the flow down an incline, a large tracer reaches an equilibrium depth during flow. For large S, its depth is intermediate, inside the bed. For the largest S, its depth is reverse, near the bottom. Results are slightly different for thin or thick flow. For 3D thick flows, the reversal between surface and bottom positions occurs within a short range of S: no tracer stabilizes near mid-height and two reachable intermediate depth layers exist, below the surface and above the bottom. For 3D thin flows, all intermediate depths are reachable, depending on S. The numerical study of larger tracer fractions (5-10%) shows the 3 segregation patterns (surface, intermediate, reverse) corresponding to the 3 types of equilibrium depth. The reversal is smoother than for a single tracer. It happens around S=4.5, in agreement with experiments.Comment: 18 pages, 27 figure

    Relation between dry granular flow regimes and morphology of deposits: formation of levees in pyroclastic deposits

    Get PDF
    Experiments on dry granular matter flowing down an inclined plane are performed in order to study the dynamics of dense pyroclastic flows. The plane is rough, and always wider than the flow, focusing this study on the case of laterally unconfined (free boundary) flows.We found that several flow regimes exist depending on the input fluxand on the inclination of the plane. Each flow regime corresponds to a particular morphology of the associated deposit. In one of these regimes, the flow reaches a steady state, and the deposit exhibits a levee/channel morphology similar to those observed on small pyroclastic flow deposits. The levees result from the combination between lateral static zones on each border of the flow and the drainage of the central part of the flow after the supply stops. Particle segregation featuresare created during the flow, corresponding to those observed on the deposits of pyroclastic flows. Moreover, the measurements of the deposit morphology (thickness of the channel, height of the levees, width of the deposit) are quantitatively related to parameters of the dynamics of the flow (flux, velocity, height of the flow), leading to a way of studying the flow dynamics from only measurements of the deposit. Some attempts to make extensions to natural cases are discussed through experiments introducing the polydispersity of the particle sizes and the particle segregation process

    Sliding susceptibility of a rough cylinder on a rough inclined perturbed surface

    Full text link
    A susceptibility function χ(L){\chi}(L) is introduced to quantify some aspects of the intermittent stick-slip dynamics of a rough metallic cylinder of length LL on a rough metallic incline submitted to small controlled perturbations and maintained below the angle of repose. This problem is studied from the experimental point of view and the observed power-law behavior of χ(L){\chi}(L) is justified through the use of a general class of scaling hypotheses.Comment: 14 pages including 5 figure

    Stationary shear flows of dense granular materials : a tentative continuum modelling

    Full text link
    We propose a simple continuum model to interpret the shearing motion of dense, dry and cohesion-less granular media. Compressibility, dilatancy and Coulomb-like friction are the three basic ingredients. The granular stress is split into a rate-dependent part representing the rebound-less impacts between grains and a rate-independent part associated with long-lived contacts. Because we consider stationary flows only, the grain compaction and the grain velocity are the two main variables. The predicted velocity and compaction profiles are in apparent agreement with the experimental or numerical results concerning free-surface shear flows as well as confined shear flow
    • …
    corecore