2,354 research outputs found

    LearnFCA: A Fuzzy FCA and Probability Based Approach for Learning and Classification

    Get PDF
    Formal concept analysis(FCA) is a mathematical theory based on lattice and order theory used for data analysis and knowledge representation. Over the past several years, many of its extensions have been proposed and applied in several domains including data mining, machine learning, knowledge management, semantic web, software development, chemistry ,biology, medicine, data analytics, biology and ontology engineering. This thesis reviews the state-of-the-art of theory of Formal Concept Analysis(FCA) and its various extensions that have been developed and well-studied in the past several years. We discuss their historical roots, reproduce the original definitions and derivations with illustrative examples. Further, we provide a literature review of it’s applications and various approaches adopted by researchers in the areas of dataanalysis, knowledge management with emphasis to data-learning and classification problems. We propose LearnFCA, a novel approach based on FuzzyFCA and probability theory for learning and classification problems. LearnFCA uses an enhanced version of FuzzyLattice which has been developed to store class labels and probability vectors and has the capability to be used for classifying instances with encoded and unlabelled features. We evaluate LearnFCA on encodings from three datasets - mnist, omniglot and cancer images with interesting results and varying degrees of success. Adviser: Dr Jitender Deogu

    LEARNFCA: A FUZZY FCA AND PROBABILITY BASED APPROACH FOR LEARNING AND CLASSIFICATION

    Get PDF
    Formal concept analysis(FCA) is a mathematical theory based on lattice and order theory used for data analysis and knowledge representation. Over the past several years, many of its extensions have been proposed and applied in several domains including data mining, machine learning, knowledge management, semantic web, software development, chemistry ,biology, medicine, data analytics, biology and ontology engineering. This thesis reviews the state-of-the-art of theory of Formal Concept Analysis(FCA) and its various extensions that have been developed and well-studied in the past several years. We discuss their historical roots, reproduce the original definitions and derivations with illustrative examples. Further, we provide a literature review of it’s applications and various approaches adopted by researchers in the areas of dataanalysis, knowledge management with emphasis to data-learning and classification problems. We propose LearnFCA, a novel approach based on FuzzyFCA and probability theory for learning and classification problems. LearnFCA uses an enhanced version of FuzzyLattice which has been developed to store class labels and probability vectors and has the capability to be used for classifying instances with encoded and unlabelled features. We evaluate LearnFCA on encodings from three datasets - mnist, omniglot and cancer images with interesting results and varying degrees of success. Adviser: Jitender Deogu

    The Hierarchic treatment of marine ecological information from spatial networks of benthic platforms

    Get PDF
    Measuring biodiversity simultaneously in different locations, at different temporal scales, and over wide spatial scales is of strategic importance for the improvement of our understanding of the functioning of marine ecosystems and for the conservation of their biodiversity. Monitoring networks of cabled observatories, along with other docked autonomous systems (e.g., Remotely Operated Vehicles [ROVs], Autonomous Underwater Vehicles [AUVs], and crawlers), are being conceived and established at a spatial scale capable of tracking energy fluxes across benthic and pelagic compartments, as well as across geographic ecotones. At the same time, optoacoustic imaging is sustaining an unprecedented expansion in marine ecological monitoring, enabling the acquisition of new biological and environmental data at an appropriate spatiotemporal scale. At this stage, one of the main problems for an effective application of these technologies is the processing, storage, and treatment of the acquired complex ecological information. Here, we provide a conceptual overview on the technological developments in the multiparametric generation, storage, and automated hierarchic treatment of biological and environmental information required to capture the spatiotemporal complexity of a marine ecosystem. In doing so, we present a pipeline of ecological data acquisition and processing in different steps and prone to automation. We also give an example of population biomass, community richness and biodiversity data computation (as indicators for ecosystem functionality) with an Internet Operated Vehicle (a mobile crawler). Finally, we discuss the software requirements for that automated data processing at the level of cyber-infrastructures with sensor calibration and control, data banking, and ingestion into large data portals.Peer ReviewedPostprint (published version

    Semantic annotation of digital music

    Get PDF
    AbstractIn recent times, digital music items on the internet have been evolving in a vast information space where consumers try to find/locate the piece of music of their choice by means of search engines. The current trend of searching for music by means of music consumersʼ keywords/tags is unable to provide satisfactory search results. It is argued that search and retrieval of music can be significantly improved provided end-usersʼ tags are associated with semantic information in terms of acoustic metadata – the latter being easy to extract automatically from digital music items. This paper presents a lightweight ontology that will enable music producers to annotate music against MPEG-7 description (with its acoustic metadata) and the generated annotation may in turn be used to deliver meaningful search results. Several potential multimedia ontologies have been explored and a music annotation ontology, named mpeg-7Music, has been designed so that it can be used as a backbone for annotating music items

    A survey on the development status and application prospects of knowledge graph in smart grids

    Full text link
    With the advent of the electric power big data era, semantic interoperability and interconnection of power data have received extensive attention. Knowledge graph technology is a new method describing the complex relationships between concepts and entities in the objective world, which is widely concerned because of its robust knowledge inference ability. Especially with the proliferation of measurement devices and exponential growth of electric power data empowers, electric power knowledge graph provides new opportunities to solve the contradictions between the massive power resources and the continuously increasing demands for intelligent applications. In an attempt to fulfil the potential of knowledge graph and deal with the various challenges faced, as well as to obtain insights to achieve business applications of smart grids, this work first presents a holistic study of knowledge-driven intelligent application integration. Specifically, a detailed overview of electric power knowledge mining is provided. Then, the overview of the knowledge graph in smart grids is introduced. Moreover, the architecture of the big knowledge graph platform for smart grids and critical technologies are described. Furthermore, this paper comprehensively elaborates on the application prospects leveraged by knowledge graph oriented to smart grids, power consumer service, decision-making in dispatching, and operation and maintenance of power equipment. Finally, issues and challenges are summarised.Comment: IET Generation, Transmission & Distributio

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio
    corecore