695 research outputs found

    LEARNFCA: A FUZZY FCA AND PROBABILITY BASED APPROACH FOR LEARNING AND CLASSIFICATION

    Get PDF
    Formal concept analysis(FCA) is a mathematical theory based on lattice and order theory used for data analysis and knowledge representation. Over the past several years, many of its extensions have been proposed and applied in several domains including data mining, machine learning, knowledge management, semantic web, software development, chemistry ,biology, medicine, data analytics, biology and ontology engineering. This thesis reviews the state-of-the-art of theory of Formal Concept Analysis(FCA) and its various extensions that have been developed and well-studied in the past several years. We discuss their historical roots, reproduce the original definitions and derivations with illustrative examples. Further, we provide a literature review of it’s applications and various approaches adopted by researchers in the areas of dataanalysis, knowledge management with emphasis to data-learning and classification problems. We propose LearnFCA, a novel approach based on FuzzyFCA and probability theory for learning and classification problems. LearnFCA uses an enhanced version of FuzzyLattice which has been developed to store class labels and probability vectors and has the capability to be used for classifying instances with encoded and unlabelled features. We evaluate LearnFCA on encodings from three datasets - mnist, omniglot and cancer images with interesting results and varying degrees of success. Adviser: Jitender Deogu

    LearnFCA: A Fuzzy FCA and Probability Based Approach for Learning and Classification

    Get PDF
    Formal concept analysis(FCA) is a mathematical theory based on lattice and order theory used for data analysis and knowledge representation. Over the past several years, many of its extensions have been proposed and applied in several domains including data mining, machine learning, knowledge management, semantic web, software development, chemistry ,biology, medicine, data analytics, biology and ontology engineering. This thesis reviews the state-of-the-art of theory of Formal Concept Analysis(FCA) and its various extensions that have been developed and well-studied in the past several years. We discuss their historical roots, reproduce the original definitions and derivations with illustrative examples. Further, we provide a literature review of it’s applications and various approaches adopted by researchers in the areas of dataanalysis, knowledge management with emphasis to data-learning and classification problems. We propose LearnFCA, a novel approach based on FuzzyFCA and probability theory for learning and classification problems. LearnFCA uses an enhanced version of FuzzyLattice which has been developed to store class labels and probability vectors and has the capability to be used for classifying instances with encoded and unlabelled features. We evaluate LearnFCA on encodings from three datasets - mnist, omniglot and cancer images with interesting results and varying degrees of success. Adviser: Dr Jitender Deogu

    Spoken content retrieval: A survey of techniques and technologies

    Get PDF
    Speech media, that is, digital audio and video containing spoken content, has blossomed in recent years. Large collections are accruing on the Internet as well as in private and enterprise settings. This growth has motivated extensive research on techniques and technologies that facilitate reliable indexing and retrieval. Spoken content retrieval (SCR) requires the combination of audio and speech processing technologies with methods from information retrieval (IR). SCR research initially investigated planned speech structured in document-like units, but has subsequently shifted focus to more informal spoken content produced spontaneously, outside of the studio and in conversational settings. This survey provides an overview of the field of SCR encompassing component technologies, the relationship of SCR to text IR and automatic speech recognition and user interaction issues. It is aimed at researchers with backgrounds in speech technology or IR who are seeking deeper insight on how these fields are integrated to support research and development, thus addressing the core challenges of SCR

    Neutrosophic Sets and Systems, Vol. 10, 2015

    Get PDF
    This volume is a collection of thirteen papers, written by different authors and co-authors (listed in the order of the papers): J. J. Peng and J. Q. Wang, E. Marei, S. Kar, K. Basu, S. Mukherjee, I. M. Hezam, M. Abdel-Baset and F. Smarandache, K. Mondal, S. Pramanik, A. Ionescu, M. R. Parveen and P. Sekar, B. Teodorescu, D. Kour and K. Basu, P. P. Dey and B. C. Giri, A. A. A. Agboola. In first paper, the authors studied Multi-valued Neutrosophic Sets and its Application in Multi-criteria Decision-Making Problems. More on neutrosophic soft rough sets and its modification is discussed in the second paper. Solution of Multi-Criteria Assignment Problem using Neutrosophic Set Theory are studied in third paper. In fourth paper, Taylor Series Approximation to Solve Neutrosophic Multiobjective Programming Problem. Similarly in fifth paper, Decision Making Based on Some similarity Measures under Interval Rough Neutrosophic Environment is discussed. In paper six, Neutralité neutrosophique et expressivité dans le style journalistique is studied by the author. Neutrosophic Semilattices and Their Properties given in seventh paper. Liminality and Neutrosophy is proposed in the next paper. Application of Extended Fuzzy Program-ming Technique to a real life Transportation Problem in Neutrosophic environment in the next paper. Further, TOPSIS for Single Valued Neutrosophic Soft Expert Set Based Multi-attribute Decision Making Problems is discussed by the authors in the tenth paper. In eleventh paper, Neutrosophic Quadruple Numbers, Refined Neutrosophic Quadruple Numbers, Absorbance Law, and the Multiplication of Neutrosophic Quadruple Numbers have been studied by the author. In the next paper, On Refined Neutrosophic Algebraic Structures. At the end, Neutrosophic Actions, Prevalence Order, Refinement of Neutrosophic Entities, and Neutrosophic Literal Logical Operators are introduced by the author

    Achieving while maintaining:A logic of knowing how with intermediate constraints

    Get PDF
    In this paper, we propose a ternary knowing how operator to express that the agent knows how to achieve ϕ\phi given ψ\psi while maintaining χ\chi in-between. It generalizes the logic of goal-directed knowing how proposed by Yanjing Wang 2015 'A logic of knowing how'. We give a sound and complete axiomatization of this logic.Comment: appear in Proceedings of ICLA 201

    A suite of quantum algorithms for the shortestvector problem

    Get PDF
    Crytography has come to be an essential part of the cybersecurity infrastructure that provides a safe environment for communications in an increasingly connected world. The advent of quantum computing poses a threat to the foundations of the current widely-used cryptographic model, due to the breaking of most of the cryptographic algorithms used to provide confidentiality, authenticity, and more. Consequently a new set of cryptographic protocols have been designed to be secure against quantum computers, and are collectively known as post-quantum cryptography (PQC). A forerunner among PQC is lattice-based cryptography, whose security relies upon the hardness of a number of closely related mathematical problems, one of which is known as the shortest vector problem (SVP). In this thesis I describe a suite of quantum algorithms that utilize the energy minimization principle to attack the shortest vector problem. The algorithms outlined span the gate-model and continuous time quantum computing, and explore methods of parameter optimization via variational methods, which are thought to be effective on near-term quantum computers. The performance of the algorithms are analyzed numerically, analytically, and on quantum hardware where possible. I explain how the results obtained in the pursuit of solving SVP apply more broadly to quantum algorithms seeking to solve general real-world problems; minimize the effect of noise on imperfect hardware; and improve efficiency of parameter optimization.Open Acces

    Recognition and Understanding of Meetings The AMI and AMIDA Projects

    Get PDF
    The AMI and AMIDA projects are concerned with the recognition and interpretation of multiparty meetings. Within these projects we have: developed an infrastructure for recording meetings using multiple microphones and cameras; released a 100 hour annotated corpus of meetings; developed techniques for the recognition and interpretation of meetings based primarily on speech recognition and computer vision; and developed an evaluation framework at both component and system levels. In this paper we present an overview of these projects, with an emphasis on speech recognition and content extraction
    • 

    corecore