410 research outputs found

    Synchronous reluctance motors with fractional slot-concentrated windings

    Get PDF
    PhD ThesisToday, high efficiency and high torque density electrical machines are a growing research interest and machines that contain no permanent magnet material are increasingly sought. Despite the lack of interest over the last twenty years, the permanent magnet-free synchronous reluctance machine is undergoing a revival and has become a research focus due to its magnet-free construction, high efficiency and robustness. They are now considered a potential future technology for future industrial variable speed drive applications and even electric vehicles. This thesis presents for the first time a synchronous reluctance motor with fractional slot-concentrated windings, utilizing non-overlapping single tooth wound coils, for high efficiency and high torque density permanent magnet-free electric drives. It presents all stages of the design and validation process from the initial concept stage through the design of such a machine, to the test and validation of a constructed prototype motor. The prototype machine utilizes a segmented stator core back iron arrangement for ease of winding and facilitating high slot fill factors. The conventional synchronous reluctance motor topology utilizes distributed winding systems with a large number of stator slots, presenting some limitations and challenges when considering high efficiency, high torque density electrical machines with low cost. This thesis aims to present an advancement in synchronous reluctance technology by identifying limitations and improving the design of synchronous reluctance motors through development of a novel machine topology. With the presented novel fractional slot concentrated winding machine design, additional challenges such as high torque ripple and low power factor arise, they are explored and analysed - the design modified to minimise any unwanted parasitic effects. The electrical and electromagnetic characteristics of the developed machine are also explored and compared with that of a conventional machine. A novel FEA post-processing technique is developed to analyse individual air-gap field harmonic torque contributions and the machines dq theory also modified in order to account for additional effects. The developed machine is found to be lower cost, lower mass and higher efficiency than an equivalent induction or conventional synchronous reluctance motor, but does suffer higher torque ripples and lower power factor. The prototype is validated using static and dynamic testing with the results showing a good match with finite element predictions. The work contained within this thesis can be considered as a first step to developing commercial technology based on the concept for variable speed drive applications.Financial assistance was provided by was provided by the UK Engineering and Physical Sciences Research Council (EPSRC) in the form of a Doctoral Training Award and additional financial assistance was kindly provided by Cummins Generator Technologies, Stamford, UK, through industrial sponsorship of this wor

    Traction motors for electric vehicles: Maximization of mechanical efficiency – A review

    Get PDF
    With the accelerating electrification revolution, new challenges and opportunities are yet emerging, despite range anxiety is still one of the biggest obstacles. Battery has been in the spotlight for resolving this problem, but other critical vehicle components such as traction motors are the key to efficient propulsion. Traction motor design involves a multidisciplinary approach, with still significant room for improvement in terms of efficiency. Therefore, this paper provides a comprehensive review of scientific literature looking at various aspects of traction motors to maximize mechanical efficiency for the application to high-performance Battery Electric Vehicles. At first, and overview on the mechanical design of electric motors is presented, focusing on topology selection, efficiency, transmission systems, and vehicle layouts; Special attention is then paid to the thermal management, as it is one of the main aspects that affects the global efficiency of such machines; thirdly, the paper presents a discussion on possible future trends to tackle ongoing challenges and to further enhance the performance of traction motors

    A review of electrical motor topologies for aircraft propulsion

    Get PDF
    This paper provides a review of the state-of-the art in aircraft electrical propulsion (AEP). Initially, the limitations of on-board energy storage devices are highlighted and contextualised. The definitions of useful measures for determining the suitability of motor design, namely specific power and motor torque per unit rotor volume (TRW), are discussed and relevant examples are provided. The classifications of motors used for terrestrial vehicle applications are reviewed and their limitations highlighted regarding their suitability to AEP applications. A discussion on motor configurations for aerospace applications is provided which includes: synchronous motor stator winding configurations; axial flux motor configurations and the causes of energy losses. Additionally, the topologies and performance characteristics of existing aerospace motor technologies are examined. It was concluded that electrical motors provide an ideal means for achieving aircraft propulsion and that higher motor speeds are likely to be required for future commercial aircraft motor designs

    New synchronous machine rotor design for easy insertion of excitation coils based on surrogate optimisation

    Get PDF
    The thesis reviews the development of traditional synchronous machine design and point out one problem with the manufacture of wound rotor synchronous machines. Install and repair process of the rotor windings can be considered labor-costly and time-consuming in synchronous machine design. The conclusion indicates a new winding method would be helpful for not only the new machines but also for rewound machines. A new rotor design for the easy insertion and repair of the rotor windings is then introduced. This new asymmetrical rotor shows good potentials for reducing the maintenance and repair costs of synchronous machines, making it suitable for manufacturers within the mass production markets such as gen-sets, steam turbines, wind power generators. Simulation results from 2-D finite element analysis and experimental results from testing a 27.5 kVA prototype machine have verified the performance of the new rotor. The results show that the asymmetrical machine’s electromagnetic performance is worse than traditional design and need to be optimised. The shape of the rotor is then optimised based on novel surrogate method in order to achieve the lowest power loss under the maximum power output. This method combines surrogate optimistaion with finite element method. It significantly reduces the time cost of the optimization process and can be applied with very complicated geometry design of the rotor. The performance of the new rotor is examined in 2-D finite element software and validated by experiments. After optimisation, the efficiency of the new rotor can reach the same level of the traditional rotor in electromagnetic performance in addition to its easy insertion and repair feature

    Automated Design Optimization of Synchronous Machines: Development and Application of a Generic Fitness Evaluation Framework

    Get PDF
    A rotating synchronous electric machine design can be described to its entirety by a combination of 17 to 24 discrete and continuous parameters pertaining the geometry, material selection, and electrical loading. Determining the performance attributes of a design often involves numerical solutions to thermal and magnetic equations. Stochastic optimization methods have proven effective for solving specific design problems in literature. A major challenge to design automation, however, is whether the design tool is versatile enough to solve design problems with different types of objectives and requirements. This work proposes a black-box approach in an attempt to encompass a wide variety of synchronous machine design problems. This approach attempts to enlist all possible attributes of interest (AoIs) to the end-user so that the design optimization problem can be framed by combination of such attributes only. The number of ways the end-user can input requirements is now defined and limited. Design problems are classified based on which of the AoI’s are constraints, objectives or design parameters. It is observed that regardless of the optimization problem definition, the evaluation of any design is based on a common set of physical and analytical models and empirical data. Problem definitions are derived based on black-box approach and efficient fitness evaluation algorithms are tailored to meet requirements of each problem definition. The proposed framework is implemented in Matlab/C++ environment encompassing different aspects of motor design. The framework is employed for designing synchronous machines for three applications where designs based on conventional motor construction did not meet all design requirements. The first design problem is to develop a novel bar-conductor tooth-wound stator technology for 1.2 kW in-wheel direct drive motor for an electric/hybrid-electric two wheeler (including practical implementation). The second design problem deals with a novel outer-rotor buried ferrite magnet geometry for a 1.2 kW in-wheel geared motor drive used in an electric/hybrid-electric two wheeler (including practical implementation). The third application involves design of an ultra-cost-effective and ultra-light-weight 1 kW aluminum conductor motor. Thus, the efficacy of automated design is demonstrated by harnessing the framework and algorithms for exploring new technologies applicable for three distinct design problems originated from practical applications

    Advanced Ultra-High Speed Motor for Drilling

    Full text link

    Comparison of interior permanent magnet synchronous machines for a high-speed application

    Get PDF
    Permanent Magnet machines have been increasingly used in high-speed applications due to the advantages they offer such as higher efficiency, output torque and, output power. This dissertation discusses the electrical and magnetic design of permanent magnet machines and the design and analysis of two 10 kW, 30000 rpm Interior Permanent Magnet (IPM) machines. This dissertation consists of two parts: the first part discusses high-speed machine topologies, and in particular the permanent magnet machine. Trends, advantages, disadvantages, recent developments, etc. are discussed and conclusions are made. The second part presents the design, analysis and testing of interior permanent magnet machines for a high-speed application. The machines are designed from first principles and are simulated using Ansys Maxwell software to understand the finite element analysis. In order to obtain a fair comparison between the machines, the required output criteria was used as the judging criteria (10kW, 30000 rpm). As a result, the rotor diameter, stator diameter, airgap length, and stack length were kept the same for both machines. The winding configuration was set as distributed windings, however the number of turns and other details were kept flexible in order to be able to obtain the best design for each machine. Similarly, the magnet volume was kept flexible as this could be used as a comparison criteria relating to the cost of the machines. The two IPM topologies are compared with respect to their torque, magnetic field, airgap flux, core loss, efficiency, and cost. The radial IPM produces a smoother torque output, with lower torque ripple, and has lower losses compared to the circumferential IPM which produces a higher torque and power output. Furthermore, the circumferential IPM also experiences much higher torque ripple and core losses, both of which are highly undesirable characteristics for high-speed machines. In addition, the circumferential IPM has a much more complex manufacturing process compared to the radial IPM which would significantly increase the cost of prototyping the machine, thus the radial IPM was selected for prototyping and brief experimental analysis. The radial IPM has been experimentally tested under no-load conditions. These results were successfully compared to the simulated and analytical results to show correlation between the design and experimental process. Potential areas of further work may include conducting detailed loss analysis to understand the effects that changing various design parameters has on the core loss and overall performance. Detailed thermal and mechanical analysis of the machines may also result in interesting conclusions that would alter the design of the machine to make it more efficient

    Optimal Design of Special High Torque Density Electric Machines based on Electromagnetic FEA

    Get PDF
    Electric machines with high torque density are essential for many low-speed direct-drive systems, such as wind turbines, electric vehicles, and industrial automation. Permanent magnet (PM) machines that incorporate a magnetic gearing effect are particularly useful for these applications due to their potential for achieving extremely high torque density. However, when the number of rotor polarities is increased, there is a corresponding need to increase the number of stator slots and coils proportionally. This can result in manufacturing challenges. A new topology of an axial-flux vernier-type machine of MAGNUS type has been presented to address the mentioned limitation. These machines can attain high electrical frequency using only a few stator coils and teeth, which can simplify construction and manufacturing under certain conditions. Additionally, the inclusion of auxiliary small teeth within the stator main teeth can generate a noteworthy increase in output torque, making it a unique characteristic of this motor. By analyzing the operating principle of the proposed VTFM PM machine, possible pole-slot combinations have been derived. The process of designing an electric machine is complicated and involves several variables and factors that must be balanced by the designer, such as efficiency, cost, and performance requirements. To achieve a successful design, it is crucial to employ multi-objective optimization. Using a 3D FEA model can consider the impact of magnetic saturation, leakage flux, and end effects, which are not accounted for in 2D. Optimization using a 3D parametric model can offer a more precise analysis. Validating the machine\u27s performance requires prototyping a model and testing it under different operating conditions, such as speed and load, which is a crucial step. This approach provides valuable insights into the machine\u27s behavior, allowing the identification of any areas for improvement or weaknesses. A large-scale multi-objective optimization study has been conducted for an axial-flux vernier-type PM machine with a 3-dimensional (3D) finite element analysis (FEA) to minimize the material cost and maximize the electromagnetic efficiency. A detailed study for torque contribution has indicated that auxiliary teeth on each stator main teeth amplify net torque production. A prototype of optimal design has been built and tested

    Compact electrical generators for diesel driven generating sets

    Get PDF
    This thesis explores two approaches for converting rotating mechanical power from diesel engines into electrical power of fixed frequency and voltage. Advances in high energy permanent magnets and power electronics are enabling technologies that provide opportunities for electrical machines with increased efficiency and compact size. Two approaches are explored, Variable Speed and Fixed Speed power generation. For variable speed, the concept of Variable Speed Integrated Generating Sets (VSIGs) are discussed and suitable electrical machine types reviewed. Axial and Radial permanent magnet machines are compared in detail. An axial flux machine often referred to as the TORUS is researched, and a 50 kW unit designed to integrate within the flywheel housing of a diesel engine. Manufacturing aspects are considered, and two prototype machines are built and tested, the second machine demonstrates a rating of 60kW at 3000rpm. A machine model based upon a combination of Finite Element Analysis and polynomial curve fitting is developed to provide an insight into the design of such machines. During the course of this research a new form of axial electrical machine known as the Haydock Brown Machine was invented. The fundamental problem of regulating the output voltage for permanent machines has been over come by the addition of an excitation coil. Saturation, significant leakage fields and three excitation sources make the electromagnetic design process for the Haydock Brown Machine complex. The intuitive application of an equivalent circuit model provides satisfactory results and a 10kW prototype machine operating at fixed speed is built and tested. Using the model new observations are made and a new improved version is proposed called the Haydock Brown Hybrid Machine
    • …
    corecore