370 research outputs found

    Mahalanobis Distance for Class Averaging of Cryo-EM Images

    Full text link
    Single particle reconstruction (SPR) from cryo-electron microscopy (EM) is a technique in which the 3D structure of a molecule needs to be determined from its contrast transfer function (CTF) affected, noisy 2D projection images taken at unknown viewing directions. One of the main challenges in cryo-EM is the typically low signal to noise ratio (SNR) of the acquired images. 2D classification of images, followed by class averaging, improves the SNR of the resulting averages, and is used for selecting particles from micrographs and for inspecting the particle images. We introduce a new affinity measure, akin to the Mahalanobis distance, to compare cryo-EM images belonging to different defocus groups. The new similarity measure is employed to detect similar images, thereby leading to an improved algorithm for class averaging. We evaluate the performance of the proposed class averaging procedure on synthetic datasets, obtaining state of the art classification.Comment: Final version accepted to the 14th IEEE International Symposium on Biomedical Imaging (ISBI 2017

    Edge and Line Feature Extraction Based on Covariance Models

    Get PDF
    age segmentation based on contour extraction usually involves three stages of image operations: feature extraction, edge detection and edge linking. This paper is devoted to the first stage: a method to design feature extractors used to detect edges from noisy and/or blurred images. The method relies on a model that describes the existence of image discontinuities (e.g. edges) in terms of covariance functions. The feature extractor transforms the input image into a “log-likelihood ratio” image. Such an image is a good starting point of the edge detection stage since it represents a balanced trade-off between signal-to-noise ratio and the ability to resolve detailed structures. For 1-D signals, the performance of the edge detector based on this feature extractor is quantitatively assessed by the so called “average risk measure”. The results are compared with the performances of 1-D edge detectors known from literature. Generalizations to 2-D operators are given. Applications on real world images are presented showing the capability of the covariance model to build edge and line feature extractors. Finally it is shown that the covariance model can be coupled to a MRF-model of edge configurations so as to arrive at a maximum a posteriori estimate of the edges or lines in the image

    The investigation of correlator systems utilizing object and frequency space filters

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN043875 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Joint Adaptive Median Binary Patterns for texture classification

    Get PDF
    a b s t r a c t This paper addresses the challenging problem of the recognition and classification of textured surfaces given a single instance acquired under unknown pose, scale and illumination conditions. We propose a novel texture descriptor, the Adaptive Median Binary Pattern (AMBP) based on an adaptive analysis window of local patterns. The principal idea of the AMBP is to convert a small local image patch to a binary pattern using adaptive threshold selection that switches between the central pixel value as used in the Local Binary Pattern (LBP) and the median as in Median Binary Pattern (MBP), but within a variable sized analysis window depending on the local microstructure of the texture. The variability of the local adaptive window is included as joint information to increase the discriminative properties. A new multiscale scheme is also proposed in this paper to handle the texture resolution problem. AMBP is evaluated in relation to other recent binary pattern techniques and many other texture analysis methods on three large texture corpora with and without noise added, CUReT, Outex_TC00012 and KTH_TIPS2. Generally, the proposed method performs better than the best state-of-the-art techniques in the noiseless case and significantly outperforms all of them in the presence of impulse noise
    corecore