8,458 research outputs found

    For efficient navigational search, humans require full physical movement but not a rich visual scene

    Get PDF
    During navigation, humans combine visual information from their surroundings with body-based information from the translational and rotational components of movement. Theories of navigation focus on the role of visual and rotational body-based information, even though experimental evidence shows they are not sufficient for complex spatial tasks. To investigate the contribution of all three sources of information, we asked participants to search a computer generated “virtual” room for targets. Participants were provided with either only visual information, or visual supplemented with body-based information for all movement (walk group) or rotational movement (rotate group). The walk group performed the task with near-perfect efficiency, irrespective of whether a rich or impoverished visual scene was provided. The visual-only and rotate groups were significantly less efficient, and frequently searched parts of the room at least twice. This suggests full physical movement plays a critical role in navigational search, but only moderate visual detail is required

    Symmetric and asymmetric action integration during cooperative object manipulation in virtual environments

    Get PDF
    Cooperation between multiple users in a virtual environment (VE) can take place at one of three levels. These are defined as where users can perceive each other (Level 1), individually change the scene (Level 2), or simultaneously act on and manipulate the same object (Level 3). Despite representing the highest level of cooperation, multi-user object manipulation has rarely been studied. This paper describes a behavioral experiment in which the piano movers' problem (maneuvering a large object through a restricted space) was used to investigate object manipulation by pairs of participants in a VE. Participants' interactions with the object were integrated together either symmetrically or asymmetrically. The former only allowed the common component of participants' actions to take place, but the latter used the mean. Symmetric action integration was superior for sections of the task when both participants had to perform similar actions, but if participants had to move in different ways (e.g., one maneuvering themselves through a narrow opening while the other traveled down a wide corridor) then asymmetric integration was superior. With both forms of integration, the extent to which participants coordinated their actions was poor and this led to a substantial cooperation overhead (the reduction in performance caused by having to cooperate with another person)

    Effects of hyperlinks on navigation in virtual environments

    No full text
    Hyperlinks introduce discontinuities of movement to 3-D virtual environments (VEs). Nine independent attributes of hyperlinks are defined and their likely effects on navigation in VEs are discussed. Four experiments are described in which participants repeatedly navigated VEs that were either conventional (i.e. obeyed the laws of Euclidean space), or contained hyperlinks. Participants learned spatial knowledge slowly in both types of environment, echoing the findings of previous studies that used conventional VEs. The detrimental effects on participants' spatial knowledge of using hyperlinks for movement were reduced when a time-delay was introduced, but participants still developed less accurate knowledge than they did in the conventional VEs. Visual continuity had a greater influence on participants' rate of learning than continuity of movement, and participants were able to exploit hyperlinks that connected together disparate regions of a VE to reduce travel time
    corecore