1,686 research outputs found

    High rank tensor and spherical harmonic models for diffusion MRI processing

    Get PDF
    Diffusion tensor imaging (DTI) is a non-invasive quantitative method of characterizing tissue micro-structure. Diffusion imaging attempts to characterize the manner by which the water molecules within a particular location move within a given amount of time. Measurement of the diffusion tensor (D) within a voxel allows a macroscopic voxel-averaged description of fiber structure, orientation and fully quantitative evaluation of the microstructural features of healthy and diseased tissue.;The rank two tensor model is incapable of resolving multiple fiber orientations within an individual voxel. This shortcoming of single tensor model stems from the fact that the tensor possesses only a single orientational maximum. Several authors reported this non-mono-exponential behavior for the diffusion-induced attenuation in brain tissue in water and N-Acetyl Aspartate (NAA) signals, that is why the Multi-Tensor, Higher Rank Tensor and Orientation Distribution Function (ODF) were introduced.;Using the higher rank tensor, we will propose a scheme for tensor field interpolation which is inspired by subdivision surfaces in computer graphics. The method applies to Cartesian tensors of all ranks and imposes smoothness on the interpolated field by constraining the divergence and curl of the tensor field. Results demonstrate that the subdivision scheme can better preserve anisotropicity and interpolate rotations than some other interpolation methods. As one of the most important applications of DTI, fiber tractography was implemented to study the shape geometry changes. Based on the divergence and curl measurement, we will introduce new scalar measures that are sensitive to behaviors such as fiber bending and fanning.;Based on the ODF analysis, a new anisotropy measure that has the ability to describe multi-fiber heterogeneity while remaining rotationally invariant, will be introduced, which is a problem with many other anisotropy measures defined using the ODF. The performance of this novel measure is demonstrated for data with varying Signal to Noise Ratio (SNR), and different material characteristics

    Left-Invariant Diffusion on the Motion Group in terms of the Irreducible Representations of SO(3)

    Full text link
    In this work we study the formulation of convection/diffusion equations on the 3D motion group SE(3) in terms of the irreducible representations of SO(3). Therefore, the left-invariant vector-fields on SE(3) are expressed as linear operators, that are differential forms in the translation coordinate and algebraic in the rotation. In the context of 3D image processing this approach avoids the explicit discretization of SO(3) or S2S_2, respectively. This is particular important for SO(3), where a direct discretization is infeasible due to the enormous memory consumption. We show two applications of the framework: one in the context of diffusion-weighted magnetic resonance imaging and one in the context of object detection

    Diffusion Tensor Imaging Based Tractography of Human Brain Fiber Bundles

    Get PDF
    Tractography is a non-invasive process for reconstruction, modeling and visualization of neural fibers in the white matter (WM) of human brain. It has emerged as a major breakthrough for neuroscience research due to its usefulness in clinical applications. Two types of tractography approaches: deterministic and probabilistic have been investigated to evaluate their performances on tracking fiber bundles using diffusion tensor imaging (DTI). The images are taken by applying pulsed magnetic fields in multiple gradient directions. After removing the non-brain areas from the images, the diffusion tensor indices for each image voxel are calculated. White matter connectivity of the brain, i.e. tractography, is primarily based upon streamline algorithms where the local tract direction is defined by the principle direction of the diffusion tensor. Simulations are performed using three approaches: fiber assignment by continuous tracking (FACT), probability index of connectivity (PICo) and Gibbs tracking (GT). Simulation results show that probabilistic tractography i.e. PICo and GT can reconstruct longer length of fibers compared to the deterministic approach-FACT but with a cost of high computation time. Moreover, GT handles the more complex fiber configurations of crossing and kissing fibers, more effectively and provides the best reconstruction of fibers. In addition, diffusion tensor indices: fractional anisotropy (FA) and mean diffusivity (MD) for a region of interest can be quantified and used to assess several brain diseases. Prospective investigation of DTI based tractography can reveal useful information on WM architecture in normal and diseased brain which will speed up the detection and treatment of various brain diseases

    Optimization of the diffusion-weighted MRI processing pipeline for the longitudinal assessment of the brain microstructure in a rat model of Alzheimer’s disease

    Get PDF
    Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Radiações em Diagnóstico e Terapia) Universidade de Lisboa, Faculdade de Ciências, 2019The mechanism that triggers Alzheimer’s disease (AD) is not well-established, with amyloid plaques, neurofibrillary tangles of tau protein, microgliosis and glucose hypometabolism all likely involved in the early cascade. One main advantage of animal models is the possibility to tease out the impact of each insult on the neurodegeneration. Following an intracerebroventricular (icv) injection of streptozotocin (STZ), rats and monkeys develop impaired brain glucose metabolism, i.e. “diabetes of the brain”. Nu-merous studies have reported AD-like features in icv-STZ animals, but this model has never been char-acterized in terms of Magnetic Resonance Imaging (MRI)-derived biomarkers beyond structural brain atrophy. White matter degeneration has been proposed as a promising biomarker for AD that well pre-cedes cortical atrophy and correlates strongly with disease severity. Therefore, this project proposes a longitudinal study of white matter degeneration in icv-STZ rats using diffusion MRI. An existing image processing pipeline was primarily used to obtain preliminary results and propose an optimization strat-egy to improve it in terms of data quality and reliability. These strategies were tested and implemented in the pipeline when confirmed to be valuable, in order to achieve results as reproducible as possible and find the spatio-temporal pattern of brain degeneration in this animal model. All experiments were approved by the local Service for Veterinary Affairs. Male Wistar rats (N=18) (236±11 g) underwent a bilateral icv-injection of either streptozotocin (3 mg/kg, STZ group, N=10) or buffer (control group, CTL, N=8). Rats were scanned at four timepoints following surgery on a 14 T Varian system. Diffusion data were acquired using a semi-adiabatic SE-EPI PGSE sequence as follows: 4 (b=0 ms/μm2), 12 (b=0.8 ms/μm2), 16 (b=1.3 ms/μm2) and 30 (b=2 ms/μm2) directions; TE/TR=48/2500 ms, 9 coronal 1 mm slices, δ/Δ=4/27 ms, FOV=23x17 mm2, matrix=128x64 and 4 shots. The existing image processing pipeline included image denoising and eddy-correction. Moreover, diffusion and kurtosis tensors were calculated for each voxel, producing parametric maps of fractional anisotropy (FA), mean, axial and radial diffusivity (MD, AxD and RD) and mean, axial and radial kur-tosis (MK, AK and RK). Additionally, the two-compartment WMTI-Watson model was further esti-mated to provide specificity to the microstructure assessment. The following metrics were derived from the model: volume water fraction , parallel intra-axonal diffusivity , parallel ,║ and perpendicular extra-axonal diffusivities ,ꓕ and dispersion of fiber orientations 2. Since the model allows for two mathematical solutions, the >,║ solution was retained based on recent evidence. Considering pre-vious findings, the corpus callosum, cingulum, fornix and fimbria were chosen as white matter regions of interest (ROIs) and automatically segmented using anatomical atlas-based registration. Mean diffu-sion metrics were calculated in each ROI for each dataset. CTL and STZ groups were compared using two-sided t-tests at each timepoint. Within-group longitudinal changes were assessed using one-way ANOVA. Because of the small cohort, statistical analysis excluded the last time point. In the course of this project, strategies to optimize the existing pipeline were developed and tested. The existing brain atlas template was supplemented with white matter labels, rat brain extraction was semi-automated, and bias field correction of anatomical data was added before registration. Ventricle enlargement is typically reported in icv-STZ animals and normally constitutes an issue of misalignment in registration. In order to better match the label ROIs with the respective underlying tissue, several registration procedures were tested with different FA and color-coded FA template images. Color-coded FA-based registration dramatically improved the segmentation of the corpus callosum and the fimbria and reliability of diffusion metrics extracted from these regions. Moreover, additional fiber metrics were extracted from a newly developed tractography pipeline to compare with tensors metrics and finally, tensors metrics were evaluated in the gray matter for a more comprehensive spatio-temporal character-ization of brain degeneration. Results from statistical analysis were obtained after implementing the successful optimization strat-egies into the pipeline. There were few significant differences within groups over time. However, be-tween-group differences at each time point were more pronounced. White matter microstructure altera-tions were consistent with previous studies of histology and cognitive performance of the icv-STZ model. Changes in tensors metrics indicate early axonal injury in the fimbria and fornix at 2 weeks after injection, a period of potential recovery at 6 weeks after injection and late axonal injury at 13 weeks in all ROIs. The WMTI-Watson biophysical model provided specificity to the underlying microstructure, by showing intra-axonal damage in the fimbria and corpus callosum as early as 2 weeks, followed by a recover period and definite axonal loss at 13 weeks after injection. Results from tensors metrics and the WMTI-Watson model are not only complementary, they are consistent with each other and with previously-established trends for structural thickness, memory per-formance, amyloid deposition and inflammation. The icv-STZ model displays white matter changes in tracts reportedly affected by AD, while the degeneration is induced primarily by impaired brain glucose metabolism. The icv-STZ constitutes an excellent model to reproduce sporadic AD and should allow to further explore the hypothesis of AD being “type III diabetes”. The combination of diffusion information extracted from tensor imaging and biophysical modelling is a promising set of tools to assess white matter in the AD brain and might be the upcoming strategy to assess the human brain. Regarding future work, it will focus on estimating the correlation between microstructural alterations and functional con-nectivity (from resting-state functional MRI), glucose hypometabolism (from FDG-PET), and patholog-ical features (from histological stainings) – all currently under processing at CIBM. Tractography is a cutting-edge methodology to assess brain connectivity and the pipeline created could be further devel-oped to improve understanding and support diffusion metrics. The relationship between white and gray matter will also improve the understanding of spatio-temporal degeneration and the progression nature of the disease.O mecanismo que desencadeia a doença de Alzheimer (DA) não é bem conhecido, contudo sabe-se que a presença de placas amilóides e de emaranhados neurofibrilares da proteína tau, microgliose e ainda hipometabolismo de glucose estão envolvidos na fase inicial da cascata de desenvolvimento da doença. A principal vantagem dos modelos animais é justamente a possibilidade de estudar individualmente o impacto de cada um destes mecanismos no processo de neurodegeneração. Após uma injeção intracere-broventricular (icv) de estreptozotocina (STZ), várias espécies de animais mostraram um metabolismo anormal de glucose no cérebro, processo que foi referido como “diabetes do cérebro”. Vários estudos demonstraram que animais icv-STZ são portadores de características típicas de DA, mas este modelo animal nunca foi estudado em termos de biomarcadores derivados de técnicas de imagem por ressonân-cia magnética (IRM), exceto atrofia estrutural do cérebro. Um biomarcador promissor de DA que se acredita preceder a atrofia do córtex cerebral é a degeneração da matéria branca do cérebro, uma vez que foi fortemente correlacionado com a progressão e gravidade da doença. Logo, este projeto propõe um estudo longitudinal da degeneração da matéria branca em ratazanas icv-STZ utilizando IRM de di-fusão. O plano de processamento de imagem existente foi utilizado primeiramente para obter resultados preliminares e viabilizar a proposta de estratégias de otimização da mesma, em termos de melhoramento da qualidade de imagem e credibilidade das variáveis extraídas das imagens resultantes. Estas estratégias foram testadas e implementadas no plano de processamento quando a sua performance confirmou ser de valor, para que os resultados fossem o mais reproduzíveis possível em caracterizar a distribuição espácio-temporal da degeneração do cérebro neste modelo animal. Todos os procedimentos aqui descritos foram aprovados pelo serviço local dos assuntos veterinários. Ratazanas macho Wistar (N=18, 236±11 g) foram submetidas a uma injeção icv de STZ (3 mg/kg) no caso do grupo infetado (N=10) ou de um buffer no caso do grupo de controlo (N=8). As ratazanas foram examinadas no scanner de IRM do tipo Varian de 14 T em quatro momentos no tempo: 2, 6, 13 e 21 semanas após a injeção. As imagens por difusão foram adquiridas com uma sequência semi-adiabática spin-echo EPI PGSE com os seguintes parâmetros: 4 (b=0), 12 (b=0.8 ms/μm2), 16 (b=1.3 ms/μm2) and 30 (b=2 ms/μm2) direções; TE/TR=48/2500 ms, 9 secções coronais de 1 mm, δ/Δ=4/27 ms, FOV=23x17 mm2, matriz=128x64 e 4 shots. O plano existente de processamento de imagem incluía a correção das imagens ao nível de ruído e correntes-eddy. Posteriormente, os tensores de difusão e curtose foram estimados para cada voxel e os mapas paramétricos de anisotropia fracional (FA), difusão média, axial e radial (MD, AD e RD) e cur-tose média, axial e radial (MK, AK e RK) foram calculados. Adicionalmente, um modelo de difusão de água nas fibras da matéria branca foi utilizado para providenciar maior especificidade ao estudo da microestrutura do cérebro. Como tal, o modelo de dois compartimentos denominado WMTI-Watson foi também estimado e as seguintes variáveis foram derivadas do mesmo: a fração do volume de água , a difusividade paralela intra-axonal , as difusividades paralela ,║ e perpendicular ,ꓕ extra-axonais e, finalmente, a orientação da dispersão axonal 2. Este modelo matemático tem duas soluções possíveis dada a sua natureza quadrática, pelo que a solução >,║ foi imposta com base em evidências re-centes. Considerando estudos anteriores, as regiões de interesse (RDIs) da matéria branca escolhidas para analisar a microestrutura cerebral foram o corpo caloso, o cíngulo, a fimbria e a fórnix. Estes foram automaticamente segmentados através de registo de imagem de um atlas das regiões do cérebro da rata-zana e as médias das medidas extraídas dos tensores de difusão e curtose e ainda do modelo biofísico neuronal foram calculadas em cada RDI para cada conjunto de imagens obtidas. Os dois grupos de teste e controlo foram comparados usando testes t de Student bilaterais em cada momento do tempo, e a comparação das alterações longitudinais em cada grupo foi feita usando uma ANOVA. Devido ao baixo número de amostras, o último momento no tempo às 21 semanas foi excluído da análise. No decorrer deste projeto, várias estratégias para otimizar o processamento de imagem ou comple-mentar a análise da informação disponível foram testadas. Nomeadamente, o atlas cerebral da ratazana foi aperfeiçoado relativamente às regiões de matéria branca, a segmentação do cérebro foi testada com algoritmos automáticos e a correção do bias field em imagens estruturais de IRM foi adicionada ao plano antes do registo de imagem. O aumento dos ventrículos cerebrais é uma característica frequente em animais icv-STZ, constituindo um problema de alinhamento nos métodos de registo de imagem. No sentido de otimizar a correspondência entre as regiões do atlas e as respetivas regiões na imagem estru-tural e por difusão, vários procedimentos de registo de imagem foram testados. O co-registo de imagem convencional utiliza imagens estruturais para normalizar o espaço das imagens por difusão, no entanto os mapas paramétricos de FA têm vindo a substituir este conceito dado o excelente contraste que provi-denciam entre a matéria branca e cinzenta do cérebro. Mapas de FA com diferentes direções predomi-nantes mostraram uma melhoria significante da segmentação do corpo caloso e da fimbria e também do poder estatístico das variáveis extraídas destas RDIs. Adicionalmente, um novo plano de processamento de tratografia foi construído de raiz no âmbito deste projeto para extrair variáveis adicionais das fibras de interesse e compará-las com as variáveis de difusão obtidas por análise voxel-a-voxel. Por último, as variáveis calculadas através dos tensores de difusão e curtose foram avaliadas na matéria cinzenta do cérebro para uma caracterização espácio-temporal da degeneração cerebral na DA. Os resultados da análise estatística foram obtidos após integrar no plano de processamento as estra-tégias que mostraram valorizar o projeto em termos de qualidade de imagem ou credibilidade das vari-áveis. Houve poucas diferenças significativas ao longo do tempo em cada grupo, no entanto as diferen-ças entre grupos foram bastante acentuadas. As alterações ao nível da microestrutura da matéria branca foram consistentes com estudos prévios em animais icv-STZ usando métodos histológicos e avaliações das suas capacidades cognitivas. Alterações nas variáveis extraídas dos tensores indicaram deficiência axonal inicial na fimbria e no fórnix 2 semanas após injeção no grupo de teste, um potencial período de recuperação às 6 semanas e novamente deficiência axonal às 13 semanas, sendo que neste período tardio todas as RDIs foram afetadas. O modelo biofísico WMTI-Watson confirmou aumentar especificidade ao estudo da microestrutura, visto que demostrou danos intra-axonais na fimbria e no corpo caloso 2 semanas após injeção, seguidos de um período de recuperação e de perda de estrutura axonal definitiva às 13 semanas em todas as RDIs. Não só estes dois métodos de análise de IRM de difusão se complementam, como são também con-sistentes entre eles e com as tendências de alterações ao longo do tempo descritas noutros estudos. Além disso, o animal icv-STZ mostrou alterações características da DA, mesmo tendo a degeneração cerebral sido induzida pela disrupção do metabolismo de glucose no cérebro. Como tal, este modelo animal é excelente para reproduzir a doença e deverá continuar a ser avaliado nas diferentes áreas multidiscipli-nares para explorar a hipótese de a DA ser desencadeada pela falha do sistema insulina/glucose. A com-binação da informação de difusão obtida dos tensores e da modelação da difusão neuronal provou ser uma ferramenta promissora no estudo das fibras da matéria branca do cérebro e poderá vir a ser o desafio futuro no que toca a investigação clínica da DA. Este estudo focar-se-á em correlacionar as alterações microestruturais aqui descritas com dados de conectividade funcional (obtida por IRM funcional em repouso), hipometabolismo de glucose (por FDG-PET) e outras características patológicas (por colora-ção histológica) – todos já em curso no CIBM. Tratografia é a metodologia topo de gama para aceder à conetividade cerebral e o plano de processamento gerado neste projeto poderá continuar a ser desenvol-vido no futuro para informação adicional, assim como a relação entre a matéria branca e cinzenta poderá suplementar a compreensão da progressão da doença no espaço e no tempo

    Subject–Motion Correction in HARDI Acquisitions: Choices and Consequences

    Get PDF
    Diffusion-weighted imaging (DWI) is known to be prone to artifacts related to motion originating from subject movement, cardiac pulsation, and breathing, but also to mechanical issues such as table vibrations. Given the necessity for rigorous quality control and motion correction, users are often left to use simple heuristics to select correction schemes, which involves simple qualitative viewing of the set of DWI data, or the selection of transformation parameter thresholds for detection of motion outliers. The scientific community offers strong theoretical and experimental work on noise reduction and orientation distribution function (ODF) reconstruction techniques for HARDI data, where post-acquisition motion correction is widely performed, e.g., using the open-source DTIprep software (1), FSL (the FMRIB Software Library) (2), or TORTOISE (3). Nonetheless, effects and consequences of the selection of motion correction schemes on the final analysis, and the eventual risk of introducing confounding factors when comparing populations, are much less known and far beyond simple intuitive guessing. Hence, standard users lack clear guidelines and recommendations in practical settings. This paper reports a comprehensive evaluation framework to systematically assess the outcome of different motion correction choices commonly used by the scientific community on different DWI-derived measures. We make use of human brain HARDI data from a well-controlled motion experiment to simulate various degrees of motion corruption and noise contamination. Choices for correction include exclusion/scrubbing or registration of motion corrupted directions with different choices of interpolation, as well as the option of interpolation of all directions. The comparative evaluation is based on a study of the impact of motion correction using four metrics that quantify (1) similarity of fiber orientation distribution functions (fODFs), (2) deviation of local fiber orientations, (3) global brain connectivity via graph diffusion distance (GDD), and (4) the reproducibility of prominent and anatomically defined fiber tracts. Effects of various motion correction choices are systematically explored and illustrated, leading to a general conclusion of discouraging users from setting ad hoc thresholds on the estimated motion parameters beyond which volumes are claimed to be corrupted

    Characterising population variability in brain structure through models of whole-brain structural connectivity

    No full text
    Models of whole-brain connectivity are valuable for understanding neurological function. This thesis seeks to develop an optimal framework for extracting models of whole-brain connectivity from clinically acquired diffusion data. We propose new approaches for studying these models. The aim is to develop techniques which can take models of brain connectivity and use them to identify biomarkers or phenotypes of disease. The models of connectivity are extracted using a standard probabilistic tractography algorithm, modified to assess the structural integrity of tracts, through estimates of white matter anisotropy. Connections are traced between 77 regions of interest, automatically extracted by label propagation from multiple brain atlases followed by classifier fusion. The estimates of tissue integrity for each tract are input as indices in 77x77 ”connectivity” matrices, extracted for large populations of clinical data. These are compared in subsequent studies. To date, most whole-brain connectivity studies have characterised population differences using graph theory techniques. However these can be limited in their ability to pinpoint the locations of differences in the underlying neural anatomy. Therefore, this thesis proposes new techniques. These include a spectral clustering approach for comparing population differences in the clustering properties of weighted brain networks. In addition, machine learning approaches are suggested for the first time. These are particularly advantageous as they allow classification of subjects and extraction of features which best represent the differences between groups. One limitation of the proposed approach is that errors propagate from segmentation and registration steps prior to tractography. This can cumulate in the assignment of false positive connections, where the contribution of these factors may vary across populations, causing the appearance of population differences where there are none. The final contribution of this thesis is therefore to develop a common co-ordinate space approach. This combines probabilistic models of voxel-wise diffusion for each subject into a single probabilistic model of diffusion for the population. This allows tractography to be performed only once, ensuring that there is one model of connectivity. Cross-subject differences can then be identified by mapping individual subjects’ anisotropy data to this model. The approach is used to compare populations separated by age and gender
    corecore