17 research outputs found

    A Physics-Based Approach to Characterizing Helicopter External Noise Radiation from Ground-Based Noise Measurements

    Get PDF
    This thesis describes a new method of characterizing the external noise radiation of a helicopter suitable for use in the generation of ground noise contours for community land use planning and assessing the acoustic observability of helicopter flight plans. This work is an extension of the semi-empirical Rotorcraft Noise Model / Quasi-Static Acoustic Mapping (RNM/Q-SAM) methodology of characterizing helicopter externally radiated noise using acoustic radiation hemispheres. Current methods of interpolation of data on RNM acoustic radiation spheres are found to lead to high levels of inaccuracy when using sparse microphone arrays. A new method of interpolation based on the theory of radial basis functions is developed in this thesis and shown to lead to significantly improved accuracy. This thesis also extends the RNM/Q-SAM methodology to turning flight conditions. New test procedures are developed for steady turning flight conditions and then used in the acoustic flight testing of the Bell 206B helicopter. The extended RNM/Q-SAM method is applied to the resulting data set in order to generate the first acoustic radiation hemispheres for a helicopter in steady turning flight across a range of flight path angles. The results indicate that the extended Quasi-Static Acoustic Mapping technique is valid for steady turning flight Blade-Vortex Interaction noise. Furthermore, steady turning flight alone is shown not to lead to large increases in externally radiated noise compared to similar straight-line flight conditions. This indicates that high BVI noise levels reported during turns in prior research were most likely caused by transient maneuvers and not turning flight alone

    AAS/GSFC 13th International Symposium on Space Flight Dynamics

    Get PDF
    This conference proceedings preprint includes papers and abstracts presented at the 13th International Symposium on Space Flight Dynamics. Cosponsored by American Astronautical Society and the Guidance, Navigation and Control Center of the Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude dynamics; and mission design

    Hierarchic Extensions in the Static and Dynamic Analysis of Elastic Beams

    Get PDF
    Approximate solutions of static and dynamic beam problems by the p-version of the finite element method are investigated. Within a hierarchy of engineering beam idealizations, rigorous formulations of the strain and kinetic energies for straight and circular beam elements are presented. These formulations include rotating coordinate system effects and geometric nonlinearities to allow for the evaluation of vertical axis wind turbines, the motivating problem for this research. Hierarchic finite element spaces, based on extensions of the polynomial orders used to approximate the displacement variables, are constructed. The developed models are implemented into a general purpose computer program for evaluation. Quality control procedures are examined for a diverse set of sample problems. These procedures include estimating discretization errors in energy norm and natural frequencies, performing static and dynamic equilibrium checks, observing convergence for qualities of interest, and comparison with more exacting theories and experimental data. It is demonstrated that p-extensions produce exponential rates of convergence in the approximation of strain energy and natural frequencies for the class of problems investigated

    Advances in Robot Kinematics : Proceedings of the 15th international conference on Advances in Robot Kinematics

    Get PDF
    International audienceThe motion of mechanisms, kinematics, is one of the most fundamental aspect of robot design, analysis and control but is also relevant to other scientific domains such as biome- chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK) report the latest achievement in this field. ARK has a long history as the first book was published in 1991 and since then new issues have been published every 2 years. Each book is the follow-up of a single-track symposium in which the participants exchange their results and opinions in a meeting that bring together the best of world’s researchers and scientists together with young students. Since 1992 the ARK symposia have come under the patronage of the International Federation for the Promotion of Machine Science-IFToMM.This book is the 13th in the series and is the result of peer-review process intended to select the newest and most original achievements in this field. For the first time the articles of this symposium will be published in a green open-access archive to favor free dissemination of the results. However the book will also be o↵ered as a on-demand printed book.The papers proposed in this book show that robot kinematics is an exciting domain with an immense number of research challenges that go well beyond the field of robotics.The last symposium related with this book was organized by the French National Re- search Institute in Computer Science and Control Theory (INRIA) in Grasse, France
    corecore