1,185 research outputs found

    Currency recognition using a smartphone: Comparison between color SIFT and gray scale SIFT algorithms

    Get PDF
    AbstractBanknote recognition means classifying the currency (coin and paper) to the correct class. In this paper, we developed a dataset for Jordanian currency. After that we applied automatic mobile recognition system using a smartphone on the dataset using scale-invariant feature transform (SIFT) algorithm. This is the first attempt, to the best of the authors knowledge, to recognize both coins and paper banknotes on a smartphone using SIFT algorithm. SIFT has been developed to be the most robust and efficient local invariant feature descriptor. Color provides significant information and important values in the object description process and matching tasks. Many objects cannot be classified correctly without their color features. We compared between two approaches colored local invariant feature descriptor (color SIFT approach) and gray image local invariant feature descriptor (gray SIFT approach). The evaluation results show that the color SIFT approach outperforms the gray SIFT approach in terms of processing time and accuracy

    Negative Results in Computer Vision: A Perspective

    Full text link
    A negative result is when the outcome of an experiment or a model is not what is expected or when a hypothesis does not hold. Despite being often overlooked in the scientific community, negative results are results and they carry value. While this topic has been extensively discussed in other fields such as social sciences and biosciences, less attention has been paid to it in the computer vision community. The unique characteristics of computer vision, particularly its experimental aspect, call for a special treatment of this matter. In this paper, I will address what makes negative results important, how they should be disseminated and incentivized, and what lessons can be learned from cognitive vision research in this regard. Further, I will discuss issues such as computer vision and human vision interaction, experimental design and statistical hypothesis testing, explanatory versus predictive modeling, performance evaluation, model comparison, as well as computer vision research culture

    ARTIFICIAL NEURAL NETWORK TO RECOGNIZE AN INDIAN CURRENCY NOTE USING UNIQUE IDENTIFICATION MARK

    Get PDF
    Artificial neural network has a vast application and has been successfully applied to a broad spectrum of data intensive application such as financial, data mining, medical, operational analysis, industrial, science etc. This increase in application is due to its ability to solve problem where the relationship are quite dynamic or non linear. Therefore in this paper we have used ANN to recognize Indian currency note using one special feature of Indian currency note known as Identification Mark (I.D mark). The I.D mark is of different shape for different currency note except for Rs 10 where there is no identification mark present. In the proposed method first we define a window size based on the common region where there is I.D mark. Then based on the window size we have segmented the I.D mark from the currency note. After this Fourier Descriptor is used to extract the feature from the segmented portion. Then the identification of this extracted feature is done by using ANN

    Scale-invariant segmentation of dynamic contrast-enhanced perfusion MR-images with inherent scale selection

    Get PDF
    Selection of the best set of scales is problematic when developing signaldriven approaches for pixel-based image segmentation. Often, different possibly conflicting criteria need to be fulfilled in order to obtain the best tradeoff between uncertainty (variance) and location accuracy. The optimal set of scales depends on several factors: the noise level present in the image material, the prior distribution of the different types of segments, the class-conditional distributions associated with each type of segment as well as the actual size of the (connected) segments. We analyse, theoretically and through experiments, the possibility of using the overall and class-conditional error rates as criteria for selecting the optimal sampling of the linear and morphological scale spaces. It is shown that the overall error rate is optimised by taking the prior class distribution in the image material into account. However, a uniform (ignorant) prior distribution ensures constant class-conditional error rates. Consequently, we advocate for a uniform prior class distribution when an uncommitted, scaleinvariant segmentation approach is desired. Experiments with a neural net classifier developed for segmentation of dynamic MR images, acquired with a paramagnetic tracer, support the theoretical results. Furthermore, the experiments show that the addition of spatial features to the classifier, extracted from the linear or morphological scale spaces, improves the segmentation result compared to a signal-driven approach based solely on the dynamic MR signal. The segmentation results obtained from the two types of features are compared using two novel quality measures that characterise spatial properties of labelled images

    Implementation of a Coin Recognition System for Mobile Devices with Deep Learning

    Get PDF
    This paper examines the application of a deep learning approach to automatic coin recognition, via a mobile device and client-server architecture. We show that a convolutional neural network is effective for coin identification. During the training phase, we determine the optimum size of the training dataset necessary to achieve high classification accuracy with low variance. In addition, we propose a client-server architecture that enables a user to identify coins by photographing it with a smartphone. The image provided by the user is matched with the neural network on a remote server. A high correlation suggests that the image is a match. The application is a first step towards the automatic identification of coins and may help coin experts in their study of coins and reduce the associated expense of numismatic applications
    • …
    corecore