1,385 research outputs found

    Optimized Data Aggregation Method for Time, Privacy and Effort Reduction in Wireless Sensor Network

    Get PDF
    Wireless sensor networks (WSNs) have gained wide application in recent years, such as in intelligent transportation system, medical care, disaster rescue, structure health monitoring and so on. In these applications, since WSNs are multi-hop networks, and the sink nodes of WSNs require to gather every sensor node’s data, data aggregation is emerging as a critical function for WSNs. Reducing the latency of data aggregation attracts much research because many applications are event urgent. Data aggregation is ubiquitous in wireless sensor networks (WSNs). Much work investigates how to reduce the data aggregation latency. This paper considers the data aggregation method based on optimization of required time, maintain privacy while keeping lesser efforts by data aggregation in a wireless sensor network (WSN) and propose a method for the solution of the problem

    Security and Privacy in Wireless Sensor Networks

    Get PDF

    Privacy models in wireless sensor networks: a survey

    Get PDF
    Wireless Sensor Networks (WSNs) are attracting attention from the research community. One of the key issues is to provide them with privacy protection. In recent years, a huge amount of contributions has been focused on this area. Surveys and literature reviews have also been produced to give a systematic view of the different approaches taken. However, no previous work has focused on privacy models, that is, the set of assumptions made to build the approach. In particular, this paper focuses on this matter by studying 41 papers of the last 5 years. We highlight the great differences appearing among related papers that could make them incompatible to be applied simultaneously. We propose a set of guidelines to build comprehensive privacy models so as to foster their comparability and suitability analysis for different scenarios.This work was supported by the MINECO Grant TIN2013-46469-R (Security and Privacy in the Internet of You (SPINY)) and the CAM Grant S2013/ICE-3095 (Cybersecurity,Data, and Risks (CIBERDINE)), which is cofunded by EuropeanFunds (FEDER). Furthermore, J.M. de Fuentes and L. González-Manzano were also partially supported by the Programa de Ayudas a la Movilidad of Carlos III University of Madrid

    Secure Vehicular Communication Systems: Implementation, Performance, and Research Challenges

    Get PDF
    Vehicular Communication (VC) systems are on the verge of practical deployment. Nonetheless, their security and privacy protection is one of the problems that have been addressed only recently. In order to show the feasibility of secure VC, certain implementations are required. In [1] we discuss the design of a VC security system that has emerged as a result of the European SeVeCom project. In this second paper, we discuss various issues related to the implementation and deployment aspects of secure VC systems. Moreover, we provide an outlook on open security research issues that will arise as VC systems develop from today's simple prototypes to full-fledged systems

    BALANCING PRIVACY, PRECISION AND PERFORMANCE IN DISTRIBUTED SYSTEMS

    Get PDF
    Privacy, Precision, and Performance (3Ps) are three fundamental design objectives in distributed systems. However, these properties tend to compete with one another and are not considered absolute properties or functions. They must be defined and justified in terms of a system, its resources, stakeholder concerns, and the security threat model. To date, distributed systems research has only considered the trade-offs of balancing privacy, precision, and performance in a pairwise fashion. However, this dissertation formally explores the space of trade-offs among all 3Ps by examining three representative classes of distributed systems, namely Wireless Sensor Networks (WSNs), cloud systems, and Data Stream Management Systems (DSMSs). These representative systems support large part of the modern and mission-critical distributed systems. WSNs are real-time systems characterized by unreliable network interconnections and highly constrained computational and power resources. The dissertation proposes a privacy-preserving in-network aggregation protocol for WSNs demonstrating that the 3Ps could be navigated by adopting the appropriate algorithms and cryptographic techniques that are not prohibitively expensive. Next, the dissertation highlights the privacy and precision issues that arise in cloud databases due to the eventual consistency models of the cloud. To address these issues, consistency enforcement techniques across cloud servers are proposed and the trade-offs between 3Ps are discussed to help guide cloud database users on how to balance these properties. Lastly, the 3Ps properties are examined in DSMSs which are characterized by high volumes of unbounded input data streams and strict real-time processing constraints. Within this system, the 3Ps are balanced through a proposed simple and efficient technique that applies access control policies over shared operator networks to achieve privacy and precision without sacrificing the systems performance. Despite that in this dissertation, it was shown that, with the right set of protocols and algorithms, the desirable 3P properties can co-exist in a balanced way in well-established distributed systems, this dissertation is promoting the use of the new 3Ps-by-design concept. This concept is meant to encourage distributed systems designers to proactively consider the interplay among the 3Ps from the initial stages of the systems design lifecycle rather than identifying them as add-on properties to systems

    Privacy Leakage through Sensory Data on Smart Devices

    Get PDF
    Mobile devices are becoming more and more indispensable in people’s daily life. They bring variety of conveniences. However, many privacy issues also arise along with the ubiquitous usage of smart devices. Nowadays, people rely on smart devices for business and work, thus much sensitive information is released. Although smart device manufactures spend much effort to provide system level strategies for privacy preservation, lots of studies have shown that these strategies are far from perfect. In this dissertation, many privacy risks are explored. Smart devices are becoming more and more powerful as more and more sensors are embedded into smart devices. In this thesis, the relationship between sensory data and a user’s location information is analyzed first. A novel inference model and a corresponding algorithm are proposed to infer a user’s location information solely based on sensory data. The proposed approach is validated towards real-world sensory data. Another privacy issue investigated in this thesis is the inference of user behaviors based on sensory data. From extensive experiment results, it is observed that there is a strong correlation between sensory data and the tap position on a smart device’s screen. A sensory data collection app is developed to collect sensory data from more than 100 volunteers. A conventional neural network based method is proposed to infer a user’s input on a smart phone. The proposed inference model and algorithm are compared with several previous methods through extensive experiments. The results show that our method has much better accuracy. Furthermore, based on this inference model, several possible ways to steal private information are illustrated

    A Comprehensive Survey on the Cooperation of Fog Computing Paradigm-Based IoT Applications: Layered Architecture, Real-Time Security Issues, and Solutions

    Get PDF
    The Internet of Things (IoT) can enable seamless communication between millions of billions of objects. As IoT applications continue to grow, they face several challenges, including high latency, limited processing and storage capacity, and network failures. To address these stated challenges, the fog computing paradigm has been introduced, purpose is to integrate the cloud computing paradigm with IoT to bring the cloud resources closer to the IoT devices. Thus, it extends the computing, storage, and networking facilities toward the edge of the network. However, data processing and storage occur at the IoT devices themselves in the fog-based IoT network, eliminating the need to transmit the data to the cloud. Further, it also provides a faster response as compared to the cloud. Unfortunately, the characteristics of fog-based IoT networks arise traditional real-time security challenges, which may increase severe concern to the end-users. However, this paper aims to focus on fog-based IoT communication, targeting real-time security challenges. In this paper, we examine the layered architecture of fog-based IoT networks along working of IoT applications operating within the context of the fog computing paradigm. Moreover, we highlight real-time security challenges and explore several existing solutions proposed to tackle these challenges. In the end, we investigate the research challenges that need to be addressed and explore potential future research directions that should be followed by the research community.©2023 The Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/fi=vertaisarvioitu|en=peerReviewed
    • …
    corecore