1,373 research outputs found

    On the Use of Default Parameter Settings in the Empirical Evaluation of Classification Algorithms

    Full text link
    We demonstrate that, for a range of state-of-the-art machine learning algorithms, the differences in generalisation performance obtained using default parameter settings and using parameters tuned via cross-validation can be similar in magnitude to the differences in performance observed between state-of-the-art and uncompetitive learning systems. This means that fair and rigorous evaluation of new learning algorithms requires performance comparison against benchmark methods with best-practice model selection procedures, rather than using default parameter settings. We investigate the sensitivity of three key machine learning algorithms (support vector machine, random forest and rotation forest) to their default parameter settings, and provide guidance on determining sensible default parameter values for implementations of these algorithms. We also conduct an experimental comparison of these three algorithms on 121 classification problems and find that, perhaps surprisingly, rotation forest is significantly more accurate on average than both random forest and a support vector machine

    A game-theoretic framework for classifier ensembles using weighted majority voting with local accuracy estimates

    Full text link
    In this paper, a novel approach for the optimal combination of binary classifiers is proposed. The classifier combination problem is approached from a Game Theory perspective. The proposed framework of adapted weighted majority rules (WMR) is tested against common rank-based, Bayesian and simple majority models, as well as two soft-output averaging rules. Experiments with ensembles of Support Vector Machines (SVM), Ordinary Binary Tree Classifiers (OBTC) and weighted k-nearest-neighbor (w/k-NN) models on benchmark datasets indicate that this new adaptive WMR model, employing local accuracy estimators and the analytically computed optimal weights outperform all the other simple combination rules.Comment: 21 pages, 9 tables, 1 figure, 68 reference

    Is rotation forest the best classifier for problems with continuous features?

    Full text link
    In short, our experiments suggest that yes, on average, rotation forest is better than the most common alternatives when all the attributes are real-valued. Rotation forest is a tree based ensemble that performs transforms on subsets of attributes prior to constructing each tree. We present an empirical comparison of classifiers for problems with only real-valued features. We evaluate classifiers from three families of algorithms: support vector machines; tree-based ensembles; and neural networks tuned with a large grid search. We compare classifiers on unseen data based on the quality of the decision rule (using classification error) the ability to rank cases (area under the receiver operating characteristic) and the probability estimates (using negative log likelihood). We conclude that, in answer to the question posed in the title, yes, rotation forest is significantly more accurate on average than competing techniques when compared on three distinct sets of datasets. Further, we assess the impact of the design features of rotation forest through an ablative study that transforms random forest into rotation forest. We identify the major limitation of rotation forest as its scalability, particularly in number of attributes. To overcome this problem we develop a model to predict the train time of the algorithm and hence propose a contract version of rotation forest where a run time cap is imposed {\em a priori}. We demonstrate that on large problems rotation forest can be made an order of magnitude faster without significant loss of accuracy. We also show that there is no real benefit (on average) from tuning rotation forest. We maintain that without any domain knowledge to indicate an algorithm preference, rotation forest should be the default algorithm of choice for problems with continuous attributes

    Hierarchical Invariant Feature Learning with Marginalization for Person Re-Identification

    Full text link
    This paper addresses the problem of matching pedestrians across multiple camera views, known as person re-identification. Variations in lighting conditions, environment and pose changes across camera views make re-identification a challenging problem. Previous methods address these challenges by designing specific features or by learning a distance function. We propose a hierarchical feature learning framework that learns invariant representations from labeled image pairs. A mapping is learned such that the extracted features are invariant for images belonging to same individual across views. To learn robust representations and to achieve better generalization to unseen data, the system has to be trained with a large amount of data. Critically, most of the person re-identification datasets are small. Manually augmenting the dataset by partial corruption of input data introduces additional computational burden as it requires several training epochs to converge. We propose a hierarchical network which incorporates a marginalization technique that can reap the benefits of training on large datasets without explicit augmentation. We compare our approach with several baseline algorithms as well as popular linear and non-linear metric learning algorithms and demonstrate improved performance on challenging publicly available datasets, VIPeR, CUHK01, CAVIAR4REID and iLIDS. Our approach also achieves the stateof-the-art results on these datasets

    Histopathologic Image Processing: A Review

    Full text link
    Histopathologic Images (HI) are the gold standard for evaluation of some tumors. However, the analysis of such images is challenging even for experienced pathologists, resulting in problems of inter and intra observer. Besides that, the analysis is time and resource consuming. One of the ways to accelerate such an analysis is by using Computer Aided Diagnosis systems. In this work we present a literature review about the computing techniques to process HI, including shallow and deep methods. We cover the most common tasks for processing HI such as segmentation, feature extraction, unsupervised learning and supervised learning. A dataset section show some datasets found during the literature review. We also bring a study case of breast cancer classification using a mix of deep and shallow machine learning methods. The proposed method obtained an accuracy of 91% in the best case, outperforming the compared baseline of the dataset

    Learning Bag-of-Features Pooling for Deep Convolutional Neural Networks

    Full text link
    Convolutional Neural Networks (CNNs) are well established models capable of achieving state-of-the-art classification accuracy for various computer vision tasks. However, they are becoming increasingly larger, using millions of parameters, while they are restricted to handling images of fixed size. In this paper, a quantization-based approach, inspired from the well-known Bag-of-Features model, is proposed to overcome these limitations. The proposed approach, called Convolutional BoF (CBoF), uses RBF neurons to quantize the information extracted from the convolutional layers and it is able to natively classify images of various sizes as well as to significantly reduce the number of parameters in the network. In contrast to other global pooling operators and CNN compression techniques the proposed method utilizes a trainable pooling layer that it is end-to-end differentiable, allowing the network to be trained using regular back-propagation and to achieve greater distribution shift invariance than competitive methods. The ability of the proposed method to reduce the parameters of the network and increase the classification accuracy over other state-of-the-art techniques is demonstrated using three image datasets.Comment: Accepted at ICCV 201

    Dense Adaptive Cascade Forest: A Self Adaptive Deep Ensemble for Classification Problems

    Full text link
    Recent researches have shown that deep forest ensemble achieves a considerable increase in classification accuracy compared with the general ensemble learning methods, especially when the training set is small. In this paper, we take advantage of deep forest ensemble and introduce the Dense Adaptive Cascade Forest (daForest). Our model has a better performance than the original Cascade Forest with three major features: first, we apply SAMME.R boosting algorithm to improve the performance of the model. It guarantees the improvement as the number of layers increases. Second, our model connects each layer to the subsequent ones in a feed-forward fashion, which enhances the capability of the model to resist performance degeneration. Third, we add a hyper-parameters optimization layer before the first classification layer, making our model spend less time to set up and find the optimal hyper-parameters. Experimental results show that daForest performs significantly well, and in some cases, even outperforms neural networks and achieves state-of-the-art results.Comment: 22 pages, 6 figure

    Sufficient Conditions for Idealised Models to Have No Adversarial Examples: a Theoretical and Empirical Study with Bayesian Neural Networks

    Full text link
    We prove, under two sufficient conditions, that idealised models can have no adversarial examples. We discuss which idealised models satisfy our conditions, and show that idealised Bayesian neural networks (BNNs) satisfy these. We continue by studying near-idealised BNNs using HMC inference, demonstrating the theoretical ideas in practice. We experiment with HMC on synthetic data derived from MNIST for which we know the ground-truth image density, showing that near-perfect epistemic uncertainty correlates to density under image manifold, and that adversarial images lie off the manifold in our setting. This suggests why MC dropout, which can be seen as performing approximate inference, has been observed to be an effective defence against adversarial examples in practice; We highlight failure-cases of non-idealised BNNs relying on dropout, suggesting a new attack for dropout models and a new defence as well. Lastly, we demonstrate the defence on a cats-vs-dogs image classification task with a VGG13 variant

    Demystifying Orthogonal Monte Carlo and Beyond

    Full text link
    Orthogonal Monte Carlo (OMC) is a very effective sampling algorithm imposing structural geometric conditions (orthogonality) on samples for variance reduction. Due to its simplicity and superior performance as compared to its Quasi Monte Carlo counterparts, OMC is used in a wide spectrum of challenging machine learning applications ranging from scalable kernel methods to predictive recurrent neural networks, generative models and reinforcement learning. However theoretical understanding of the method remains very limited. In this paper we shed new light on the theoretical principles behind OMC, applying theory of negatively dependent random variables to obtain several new concentration results. We also propose a novel extensions of the method leveraging number theory techniques and particle algorithms, called Near-Orthogonal Monte Carlo (NOMC). We show that NOMC is the first algorithm consistently outperforming OMC in applications ranging from kernel methods to approximating distances in probabilistic metric spaces.Comment: 22 pages, 4 figure

    Learning Features for Offline Handwritten Signature Verification using Deep Convolutional Neural Networks

    Full text link
    Verifying the identity of a person using handwritten signatures is challenging in the presence of skilled forgeries, where a forger has access to a person's signature and deliberately attempt to imitate it. In offline (static) signature verification, the dynamic information of the signature writing process is lost, and it is difficult to design good feature extractors that can distinguish genuine signatures and skilled forgeries. This reflects in a relatively poor performance, with verification errors around 7% in the best systems in the literature. To address both the difficulty of obtaining good features, as well as improve system performance, we propose learning the representations from signature images, in a Writer-Independent format, using Convolutional Neural Networks. In particular, we propose a novel formulation of the problem that includes knowledge of skilled forgeries from a subset of users in the feature learning process, that aims to capture visual cues that distinguish genuine signatures and forgeries regardless of the user. Extensive experiments were conducted on four datasets: GPDS, MCYT, CEDAR and Brazilian PUC-PR datasets. On GPDS-160, we obtained a large improvement in state-of-the-art performance, achieving 1.72% Equal Error Rate, compared to 6.97% in the literature. We also verified that the features generalize beyond the GPDS dataset, surpassing the state-of-the-art performance in the other datasets, without requiring the representation to be fine-tuned to each particular dataset
    • …
    corecore