2,091 research outputs found

    Quasi-orthogonal space-frequency coding in non-coherent cooperative broadband networks

    Get PDF
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.So far, complex valued orthogonal codes have been used differentially in cooperative broadband networks. These codes however achieve less than unitary code rate when utilized in cooperative networks with more than two relays. Therefore, the main challenge is how to construct unitary rate codes for non-coherent cooperative broadband networks with more than two relays while exploiting the achievable spatial and frequency diversity. In this paper, we extend full rate quasi-orthogonal codes to differential cooperative broadband networks where channel information is unavailable. From this, we propose a generalized differential distributed quasi-orthogonal space-frequency coding (DQSFC) protocol for cooperative broadband networks. Our proposed scheme is able to achieve full rate, and full spatial and frequency diversity in cooperative networks with any number of relays. Through pairwise error probability analysis we show that the diversity gain of our scheme can be improved by appropriate code construction and sub-carrier allocation. Based on this, we derive sufficient conditions for the proposed code structure at the source node and relay nodes to achieve full spatial and frequency diversity.Peer reviewe

    Space Frequency Codes from Spherical Codes

    Full text link
    A new design method for high rate, fully diverse ('spherical') space frequency codes for MIMO-OFDM systems is proposed, which works for arbitrary numbers of antennas and subcarriers. The construction exploits a differential geometric connection between spherical codes and space time codes. The former are well studied e.g. in the context of optimal sequence design in CDMA systems, while the latter serve as basic building blocks for space frequency codes. In addition a decoding algorithm with moderate complexity is presented. This is achieved by a lattice based construction of spherical codes, which permits lattice decoding algorithms and thus offers a substantial reduction of complexity.Comment: 5 pages. Final version for the 2005 IEEE International Symposium on Information Theor
    • …
    corecore