134 research outputs found

    Dynamic Programming and Skyline Extraction in Catadioptric Infrared Images

    Get PDF
    International audienceUnmanned Aerial Vehicles (UAV) are the subject of an increasing interest in many applications and a key requirement for autonomous navigation is the attitude/position stabilization of the vehicle. Some previous works have suggested using catadioptric vision, instead of traditional perspective cameras, in order to gather much more information from the environment and therefore improve the robustness of the UAV attitude/position estimation. This paper belongs to a series of recent publications of our research group concerning catadioptric vision for UAVs. Currently, we focus on the extraction of skyline in catadioptric images since it provides important information about the attitude/position of the UAV. For example, the DEM-based methods can match the extracted skyline with a Digital Elevation Map (DEM) by process of registration, which permits to estimate the attitude and the position of the camera. Like any standard cameras, catadioptric systems cannot work in low luminosity situations because they are based on visible light. To overcome this important limitation, in this paper, we propose using a catadioptric infrared camera and extending one of our methods of skyline detection towards catadioptric infrared images. The task of extracting the best skyline in images is usually converted in an energy minimization problem that can be solved by dynamic programming. The major contribution of this paper is the extension of dynamic programming for catadioptric images using an adapted neighborhood and an appropriate scanning direction. Finally, we present some experimental results to demonstrate the validity of our approach

    Uncalibrated Visual Compass from Omnidirectional Line Images with Application to Attitude MAV Estimation

    Get PDF
    International audienceThis paper presents a new algorithm based on previous results of the authors, for the estimation of the yaw angle of an omnidirectional camera robot undergoing a 6-DoF rigid motion. Our real-time algorithm is uncalibrated, robust to noisy data, and it only relies on the projection of 3-D parallel lines as image features. Numerical and real-world experiments conducted with an eye-in-hand robot manipulator, which we used to simulate the 3-D motion of a Micro unmanned Aerial Vehicle (MAV), show the accuracy and reliability of our estimation algorithm

    Odometria visual monocular em robĂ´s para a agricultura com camara(s) com lentes "olho de peixe"

    Get PDF
    One of the main challenges in robotics is to develop accurate localization methods that achieve acceptable runtime performances.One of the most common approaches is to use Global Navigation Satellite System such as GPS to localize robots.However, satellite signals are not full-time available in some kind of environments.The purpose of this dissertation is to develop a localization system for a ground robot.This robot is inserted in a project called RoMoVi and is intended to perform tasks like crop monitoring and harvesting in steep slope vineyards.This vineyards are localized in the Douro region which are characterized by the presence of high hills.Thus, the context of RoMoVi is not prosperous for the use of GPS-based localization systems.Therefore, the main goal of this work is to create a reliable localization system based on vision techniques and low cost sensors.To do so, a Visual Odometry system will be used.The concept of Visual Odometry is equivalent to wheel odometry but it has the advantage of not suffering from wheel slip which is present in these kind of environments due to the harsh terrain conditions.Here, motion is tracked computing the homogeneous transformation between camera frames, incrementally.However, this approach also presents some open issues.Most of the state of art methods, specially those who present a monocular camera system, don't perform good motion estimations in pure rotations.In some of them, motion even degenerates in these situations.Also, computing the motion scale is a difficult task that is widely investigated in this field.This work is intended to solve these issues.To do so, fisheye lens cameras will be used in order to achieve wide vision field of views
    • …
    corecore