202 research outputs found

    Print-Scan Resilient Text Image Watermarking Based on Stroke Direction Modulation for Chinese Document Authentication

    Get PDF
    Print-scan resilient watermarking has emerged as an attractive way for document security. This paper proposes an stroke direction modulation technique for watermarking in Chinese text images. The watermark produced by the idea offers robustness to print-photocopy-scan, yet provides relatively high embedding capacity without losing the transparency. During the embedding phase, the angle of rotatable strokes are quantized to embed the bits. This requires several stages of preprocessing, including stroke generation, junction searching, rotatable stroke decision and character partition. Moreover, shuffling is applied to equalize the uneven embedding capacity. For the data detection, denoising and deskewing mechanisms are used to compensate for the distortions induced by hardcopy. Experimental results show that our technique attains high detection accuracy against distortions resulting from print-scan operations, good quality photocopies and benign attacks in accord with the future goal of soft authentication

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    2D Watermarking: Non Conventional Approaches

    Get PDF

    Security issues on digital watermarking algorithms

    Get PDF
    This paper gives a general introduction to the digital watermarking procedures and their security aspects. The first issue is to clarify unifying and differentiating properties of steganography and watermarking. Then the most important aspects of digital watermarking are reviewed by studying application, requirement and design problems. We put emphasis on the importance of digital watermark as an effective technology to protect intellectual property rights and legitimate use of digital images. In the paper we provide an overview of the most popular digital watermarking methods for still images available today. The watermarking algorithms are divided into two major categories of spatial and transform domains. Because of outstanding robustness and imperceptibility the transform domain algorithms are the mainstream of research. Popular transforms of images include the DFT (Discrete Fourier Transform) ([1, 2, 3, 4, 5]), DCT (Discrete Cosine Transform) ([1, 3, 6, 5]) and DWT (Discrete Wavelet Transform) ([1, 3, 4, 7, 6, 5]). In the paper we emphasize the advantageous features of DWT such as local time-frequency and multi-scale analysis, preserving the quality of host image and ensuring high robustness of watermark. Finally, we present three algorithms which are based on the combination of DWT and some other transformations like DFT ([4]), DCT ([6]) and the Arnold transform ([7, 6]). Finally, we discuss security requirements and possible attacks on the watermarking systems

    Robust hashing for image authentication using quaternion discrete Fourier transform and log-polar transform

    No full text
    International audienceIn this work, a novel robust image hashing scheme for image authentication is proposed based on the combination of the quaternion discrete Fourier transform (QDFT) with the log-polar transform. QDFT offers a sound way to jointly deal with the three channels of color images. The key features of the present method rely on (i) the computation of a secondary image using a log-polar transform; and (ii) the extraction from this image of low frequency QDFT coefficients' magnitude. The final image hash is generated according to the correlation of these magnitude coefficients and is scrambled by a secret key to enhance the system security. Experiments were conducted in order to analyze and identify the most appropriate parameter values of the proposed method and also to compare its performance to some reference methods in terms of receiver operating characteristics curves. The results show that the proposed scheme offers a good sensitivity to image content alterations and is robust to the common content-preserving operations, and especially to large angle rotation operations

    Local Geometric Distortions Resilient Watermarking Scheme Based on Symmetry

    Full text link
    As an efficient watermark attack method, geometric distortions destroy the synchronization between watermark encoder and decoder. And the local geometric distortion is a famous challenge in the watermark field. Although a lot of geometric distortions resilient watermarking schemes have been proposed, few of them perform well against local geometric distortion like random bending attack (RBA). To address this problem, this paper proposes a novel watermark synchronization process and the corresponding watermarking scheme. In our scheme, the watermark bits are represented by random patterns. The message is encoded to get a watermark unit, and the watermark unit is flipped to generate a symmetrical watermark. Then the symmetrical watermark is embedded into the spatial domain of the host image in an additive way. In watermark extraction, we first get the theoretically mean-square error minimized estimation of the watermark. Then the auto-convolution function is applied to this estimation to detect the symmetry and get a watermark units map. According to this map, the watermark can be accurately synchronized, and then the extraction can be done. Experimental results demonstrate the excellent robustness of the proposed watermarking scheme to local geometric distortions, global geometric distortions, common image processing operations, and some kinds of combined attacks
    corecore