4,528 research outputs found

    Rotation and scale invariant shape representation and recognition using Matching Pursuit

    Get PDF
    Using a low-level representation of images, like matching pursuit, we introduce a new way of describing objects through a general description using a translation, rotation, and isotropic scale invariant dictionary of basis functions. We then use this description as a predefined dictionary of the object to conduct a shape recognition task. We show some promising results for the detection with simple shapes

    Accelerating object extraction and detection using a hierarchical approach with shape descriptors

    Get PDF
    Automatic object recognition is a fundamental problem in the fields of computer vision and machine learning, that has received a lot of research attention lately. Miniaturization and affordability, of both, high resolution digital cameras and advanced computing hardware, have further advanced the scope and applications of object recognition methods. While there are different methods, that build upon various low level features to construct object models, this work explores and implements the use of closed-contours as formidable object features. A hierarchical technique is employed to extract the contours, exploiting the inherent spatial relationships between the parent and child contours of an object, and later describing them as part of the query feature vector. Fourier Descriptors are used to effectively and invariantly describe the extracted contours. A diverse database of shapes is created and later used to train standard classification algorithms, for shape-labeling. A simple-hierarchical, shape label and spatial descriptor matching method is implemented, to find the nearest object-model, from a collection of stored templates. Multi-threaded architecture and GPU efficient image-processing functions are adopted wherever possible, speeding up the running time of the proposed technique, and making it efficient for use in real world applications. The technique is successfully tested on common traffic signs in real world images, with overall good performance and robustness being obtained as an end result

    A survey of face detection, extraction and recognition

    Get PDF
    The goal of this paper is to present a critical survey of existing literatures on human face recognition over the last 4-5 years. Interest and research activities in face recognition have increased significantly over the past few years, especially after the American airliner tragedy on September 11 in 2001. While this growth largely is driven by growing application demands, such as static matching of controlled photographs as in mug shots matching, credit card verification to surveillance video images, identification for law enforcement and authentication for banking and security system access, advances in signal analysis techniques, such as wavelets and neural networks, are also important catalysts. As the number of proposed techniques increases, survey and evaluation becomes important

    Decomposition and dictionary learning for 3D trajectories

    Get PDF
    International audienceA new model for describing a three-dimensional (3D) trajectory is proposed in this paper. The studied trajectory is viewed as a linear combination of rotatable 3D patterns. The resulting model is thus 3D rotation invariant (3DRI). Moreover, the temporal patterns are considered as shift-invariant. This paper is divided into two parts based on this model. On the one hand, the 3DRI decomposition estimates the active patterns, their coefficients, their rotations and their shift parameters. Based on sparse approximation, this is carried out by two non-convex optimizations: 3DRI matching pursuit (3DRI-MP) and 3DRI orthogonal matching pursuit (3DRI-OMP). On the other hand, a 3DRI learning method learns the characteristic patterns of a database through a 3DRI dictionary learning algorithm (3DRI-DLA). The proposed algorithms are first applied to simulation data to evaluate their performances and to compare them to other algorithms. Then, they are applied to real motion data of cued speech, to learn the 3D trajectory patterns characteristic of this gestural language
    corecore