183 research outputs found

    Fuzzy shape Classification exploiting Geometrical and Moments Descriptors

    Get PDF
    In the era of data intensive management and discovery, the volume of images repositories requires effective means for mining and classifying digital image collections. Recent studies have evidenced great interest in image processing by "mining" visual information for objects recognition and retrieval. Particularly, image disambiguation based on the shape produces better results than traditional features such as color or texture. On the other hand, the classification of objects extracted from images appears more intuitively formulated as a shape classification task. This work introduces an approach for 2D shapes classification, based on the combined use of geometrical and moments features extracted by a given collection of images. It achieves a shape based classification exploiting fuzzy clustering techniques, which enable also a query-by-image

    Histology Image Retrieval in Optimized Multifeature Spaces

    Get PDF

    Classification of Gastric Lesions Using Gabor Block Local Binary Patterns

    Get PDF
    The identification of cancer tissues in Gastroenterology imaging poses novel challenges to the computer vision community in designing generic decision support systems. This generic nature demands the image descriptors to be invariant to illumination gradients, scaling, homogeneous illumination, and rotation. In this article, we devise a novel feature extraction methodology, which explores the effectiveness of Gabor filters coupled with Block Local Binary Patterns in designing such descriptors. We effectively exploit the illumination invariance properties of Block Local Binary Patterns and the inherent capability of convolutional neural networks to construct novel rotation, scale and illumination invariant features. The invariance characteristics of the proposed Gabor Block Local Binary Patterns (GBLBP) are demonstrated using a publicly available texture dataset. We use the proposed feature extraction methodology to extract texture features from Chromoendoscopy (CH) images for the classification of cancer lesions. The proposed feature set is later used in conjuncture with convolutional neural networks to classify the CH images. The proposed convolutional neural network is a shallow network comprising of fewer parameters in contrast to other state-of-the-art networks exhibiting millions of parameters required for effective training. The obtained results reveal that the proposed GBLBP performs favorably to several other state-of-the-art methods including both hand crafted and convolutional neural networks-based features
    • …
    corecore