1,591 research outputs found

    Rotation Invariant Convolutions for 3D Point Clouds Deep Learning

    Full text link
    Recent progresses in 3D deep learning has shown that it is possible to design special convolution operators to consume point cloud data. However, a typical drawback is that rotation invariance is often not guaranteed, resulting in networks being trained with data augmented with rotations. In this paper, we introduce a novel convolution operator for point clouds that achieves rotation invariance. Our core idea is to use low-level rotation invariant geometric features such as distances and angles to design a convolution operator for point cloud learning. The well-known point ordering problem is also addressed by a binning approach seamlessly built into the convolution. This convolution operator then serves as the basic building block of a neural network that is robust to point clouds under 6DoF transformations such as translation and rotation. Our experiment shows that our method performs with high accuracy in common scene understanding tasks such as object classification and segmentation. Compared to previous works, most importantly, our method is able to generalize and achieve consistent results across different scenarios in which training and testing can contain arbitrary rotations.Comment: International Conference on 3D Vision (3DV) 201

    Global Context Aware Convolutions for 3D Point Cloud Understanding

    Full text link
    Recent advances in deep learning for 3D point clouds have shown great promises in scene understanding tasks thanks to the introduction of convolution operators to consume 3D point clouds directly in a neural network. Point cloud data, however, could have arbitrary rotations, especially those acquired from 3D scanning. Recent works show that it is possible to design point cloud convolutions with rotation invariance property, but such methods generally do not perform as well as translation-invariant only convolution. We found that a key reason is that compared to point coordinates, rotation-invariant features consumed by point cloud convolution are not as distinctive. To address this problem, we propose a novel convolution operator that enhances feature distinction by integrating global context information from the input point cloud to the convolution. To this end, a globally weighted local reference frame is constructed in each point neighborhood in which the local point set is decomposed into bins. Anchor points are generated in each bin to represent global shape features. A convolution can then be performed to transform the points and anchor features into final rotation-invariant features. We conduct several experiments on point cloud classification, part segmentation, shape retrieval, and normals estimation to evaluate our convolution, which achieves state-of-the-art accuracy under challenging rotations

    Learning SO(3) Equivariant Representations with Spherical CNNs

    Full text link
    We address the problem of 3D rotation equivariance in convolutional neural networks. 3D rotations have been a challenging nuisance in 3D classification tasks requiring higher capacity and extended data augmentation in order to tackle it. We model 3D data with multi-valued spherical functions and we propose a novel spherical convolutional network that implements exact convolutions on the sphere by realizing them in the spherical harmonic domain. Resulting filters have local symmetry and are localized by enforcing smooth spectra. We apply a novel pooling on the spectral domain and our operations are independent of the underlying spherical resolution throughout the network. We show that networks with much lower capacity and without requiring data augmentation can exhibit performance comparable to the state of the art in standard retrieval and classification benchmarks.Comment: Camera-ready. Accepted to ECCV'18 as oral presentatio

    3D Point Capsule Networks

    Get PDF
    In this paper, we propose 3D point-capsule networks, an auto-encoder designed to process sparse 3D point clouds while preserving spatial arrangements of the input data. 3D capsule networks arise as a direct consequence of our novel unified 3D auto-encoder formulation. Their dynamic routing scheme and the peculiar 2D latent space deployed by our approach bring in improvements for several common point cloud-related tasks, such as object classification, object reconstruction and part segmentation as substantiated by our extensive evaluations. Moreover, it enables new applications such as part interpolation and replacement.Comment: As published in CVPR 2019 (camera ready version), with supplementary materia

    3D Point Capsule Networks

    Get PDF
    In this paper, we propose 3D point-capsule networks, an auto-encoder designed to process sparse 3D point clouds while preserving spatial arrangements of the input data. 3D capsule networks arise as a direct consequence of our novel unified 3D auto-encoder formulation. Their dynamic routing scheme and the peculiar 2D latent space deployed by our approach bring in improvements for several common point cloud-related tasks, such as object classification, object reconstruction and part segmentation as substantiated by our extensive evaluations. Moreover, it enables new applications such as part interpolation and replacement
    • …
    corecore