368,508 research outputs found

    A Novel Method for the Absolute Pose Problem with Pairwise Constraints

    Full text link
    Absolute pose estimation is a fundamental problem in computer vision, and it is a typical parameter estimation problem, meaning that efforts to solve it will always suffer from outlier-contaminated data. Conventionally, for a fixed dimensionality d and the number of measurements N, a robust estimation problem cannot be solved faster than O(N^d). Furthermore, it is almost impossible to remove d from the exponent of the runtime of a globally optimal algorithm. However, absolute pose estimation is a geometric parameter estimation problem, and thus has special constraints. In this paper, we consider pairwise constraints and propose a globally optimal algorithm for solving the absolute pose estimation problem. The proposed algorithm has a linear complexity in the number of correspondences at a given outlier ratio. Concretely, we first decouple the rotation and the translation subproblems by utilizing the pairwise constraints, and then we solve the rotation subproblem using the branch-and-bound algorithm. Lastly, we estimate the translation based on the known rotation by using another branch-and-bound algorithm. The advantages of our method are demonstrated via thorough testing on both synthetic and real-world dataComment: 10 pages, 7figure

    Position and Orientation Estimation through Millimeter Wave MIMO in 5G Systems

    Get PDF
    Millimeter wave signals and large antenna arrays are considered enabling technologies for future 5G networks. While their benefits for achieving high-data rate communications are well-known, their potential advantages for accurate positioning are largely undiscovered. We derive the Cram\'{e}r-Rao bound (CRB) on position and rotation angle estimation uncertainty from millimeter wave signals from a single transmitter, in the presence of scatterers. We also present a novel two-stage algorithm for position and rotation angle estimation that attains the CRB for average to high signal-to-noise ratio. The algorithm is based on multiple measurement vectors matching pursuit for coarse estimation, followed by a refinement stage based on the space-alternating generalized expectation maximization algorithm. We find that accurate position and rotation angle estimation is possible using signals from a single transmitter, in either line-of- sight, non-line-of-sight, or obstructed-line-of-sight conditions.Comment: The manuscript has been revised, and increased from 27 to 31 pages. Also, Fig.2, Fig. 10 and Table I are adde

    Constraining differential rotation of Sun-like stars from asteroseismic and starspot rotation periods

    Full text link
    In previous work we identified six Sun-like stars observed by Kepler with exceptionally clear asteroseismic signatures of rotation. Here, we show that five of these stars exhibit surface variability suitable for measuring rotation. In order to further constrain differential rotation, we compare the rotation periods obtained from light-curve variability with those from asteroseismology. The two rotation measurement methods are found to agree within uncertainties, suggesting that radial differential rotation is weak, as is the case for the Sun. Furthermore, we find significant discrepancies between ages from asteroseismology and from three different gyrochronology relations, implying that stellar age estimation is problematic even for Sun-like stars.Comment: Accepted for publication in A&A. 5 pages, 4 figure

    Looking for activity cycles in late-type Kepler stars using time-frequency analysis

    Get PDF
    We analyse light curves covering four years of 39 fast-rotating (Prot<1dP_\mathrm{rot}< 1d) late-type active stars from the Kepler database. Using time-frequency analysis (Short-Term Fourier-Transform), we find hints for activity cycles of 300-900 days at 9 targets from the changing typical latitude of the starspots, which, with the differential rotation of the stellar surface change the observed rotation period over the activity cycle. We also give a lowest estimation for the shear parameter of the differential rotation, which is ~0.001 for the cycling targets. These results populate the less studied, short period end of the rotation-cycle length relation.Comment: 12 pages, 7 figures, accepted for publication in MNRA
    • …
    corecore