1,193 research outputs found

    Oriented Response Networks

    Full text link
    Deep Convolution Neural Networks (DCNNs) are capable of learning unprecedentedly effective image representations. However, their ability in handling significant local and global image rotations remains limited. In this paper, we propose Active Rotating Filters (ARFs) that actively rotate during convolution and produce feature maps with location and orientation explicitly encoded. An ARF acts as a virtual filter bank containing the filter itself and its multiple unmaterialised rotated versions. During back-propagation, an ARF is collectively updated using errors from all its rotated versions. DCNNs using ARFs, referred to as Oriented Response Networks (ORNs), can produce within-class rotation-invariant deep features while maintaining inter-class discrimination for classification tasks. The oriented response produced by ORNs can also be used for image and object orientation estimation tasks. Over multiple state-of-the-art DCNN architectures, such as VGG, ResNet, and STN, we consistently observe that replacing regular filters with the proposed ARFs leads to significant reduction in the number of network parameters and improvement in classification performance. We report the best results on several commonly used benchmarks.Comment: Accepted in CVPR 2017. Source code available at http://yzhou.work/OR

    Fingerprint Recognition Using Translation Invariant Scattering Network

    Full text link
    Fingerprint recognition has drawn a lot of attention during last decades. Different features and algorithms have been used for fingerprint recognition in the past. In this paper, a powerful image representation called scattering transform/network, is used for recognition. Scattering network is a convolutional network where its architecture and filters are predefined wavelet transforms. The first layer of scattering representation is similar to sift descriptors and the higher layers capture higher frequency content of the signal. After extraction of scattering features, their dimensionality is reduced by applying principal component analysis (PCA). At the end, multi-class SVM is used to perform template matching for the recognition task. The proposed scheme is tested on a well-known fingerprint database and has shown promising results with the best accuracy rate of 98\%.Comment: IEEE Signal Processing in Medicine and Biology Symposium, 201

    Geometric Wavelet Scattering Networks on Compact Riemannian Manifolds

    Full text link
    The Euclidean scattering transform was introduced nearly a decade ago to improve the mathematical understanding of convolutional neural networks. Inspired by recent interest in geometric deep learning, which aims to generalize convolutional neural networks to manifold and graph-structured domains, we define a geometric scattering transform on manifolds. Similar to the Euclidean scattering transform, the geometric scattering transform is based on a cascade of wavelet filters and pointwise nonlinearities. It is invariant to local isometries and stable to certain types of diffeomorphisms. Empirical results demonstrate its utility on several geometric learning tasks. Our results generalize the deformation stability and local translation invariance of Euclidean scattering, and demonstrate the importance of linking the used filter structures to the underlying geometry of the data.Comment: 35 pages; 3 figures; 2 tables; v3: Revisions based on reviewer comment
    • …
    corecore