157 research outputs found

    Accident analysis and hazard analysis for human and organizational factors

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, February 2011."October 2010." Cataloged from PDF version of thesis.Includes bibliographical references (p. 275-283).Pressures and incentives to operate complex socio-technical aerospace systems in a high-risk state are ever present. Without consideration of the role humans and organizations play in system safety during the development of these systems, accidents will occur. Safe design of the "socio" parts of the sociotechnical system is challenging. Even if the system, including the human and organizational aspects of the system, are designed to be safe for anticipated system needs and operating environments, without consideration of pressures for increased performance and efficiency and shifting system goals, the system will migrate to a high-risk operating regime and safety can be compromised. Accident analysis is conducted to discover the reasons why an accident occurred and to prevent future accidents. Safety professionals have attributed 70-80% of aviation accidents to human error. Investigators have long known that the human and organizational aspects of systems are key contributors to accidents, yet they lack a rigorous approach for analyzing their impacts. Many safety engineers strive for blame-free reports that will foster reflection and learning from the accident, but struggle with methods that require direct technical causality, do not consider systemic factors, and seem to leave individuals looking culpable. An accident analysis method is needed that will guide the work, aid in the analysis of the role of human and organizations in accidents and promote blame-free accounting of accidents that will support learning from the events. Current hazard analysis methods, adapted from traditional accident models, are not able to evaluate the potential for risk migration, or comprehensively identify accident scenarios involving humans and organizations. Thus, system engineers are not able to design systems that prevent loss events related to human error or organizational factors. State of the art methods for human and organization hazard analysis are, at best, elaborate event-based classification schemes for potential errors. Current human and organization hazard analysis methods are not suitable for use as part of the system engineering process. Systems must be analyzed with methods that identify all human and organization related hazards during the design process, so that this information can be used to change the design so that human error and organization errors do not occur. Errors must be more than classified and categorized, errors must be prevented in design. A new type of hazard analysis method that identifies hazardous scenarios involving humans and organizations is needed for both systems in conception and those already in the field. This thesis contains novel new approaches to accident analysis and hazard analysis. Both methods are based on principles found in the Human Factors, Organizational Safety and System Safety literature. It is hoped that the accident analysis method should aid engineers in understanding how human actions and decisions are connected to the accident and aid in the development of blame-free reports that encourage learning from accidents. The goal for the hazard analysis method is that it will be useful in: 1) designing systems to be safe; 2) diagnosing policies or pressures and identifying design flaws that contribute to high-risk operations; 3) identifying designs that are resistant to pressures that increase risk; and 4) allowing system decision-makers to predict how proposed or current policies will affect safety. To assess the accident analysis method, a comparison with state of the art methods is conducted. To demonstrate the feasibility of the method applied to hazard analysis; it is applied to several systems in various domains.by Margaret V. Stringfellow.Ph.D

    Noise and Time Pressure Effects on Situation Awareness and Aviation Maintenance Tasks

    Get PDF
    Aircraft maintenance technicians (AMTs) working in a line maintenance work setting are very susceptible to the deafening occupational noise from the airport vicinity or the maintenance machinery itself. Compared to a base maintenance working period, a line maintenance job requires AMTs to complete a task within a short time frame. The current study\u27s objective is to determine if different noise levels and time pressure influence AMTs\u27 performance and situation awareness (SA). Sixteen Embry-Riddle Aeronautical University students majoring in Aviation Maintenance Science participated in a within-subject experimental design. Each participant\u27s performance, SA level, and perceived workload were measured during maintenance tasks in four different environments. The results show that time pressure significantly affects AMTs\u27 performance, SA, and perceived workload. However, the performance, SA, and perceived workload were not significantly affected by the noise levels

    Prospect for Regional Planning in California

    Get PDF
    Because the environment is being seriously threatened by overpopulation, overdevelopment, and pollution, there has been an increasing awareness of dhe need to control land usage through comprehensive regional planning. While California has failed to effectively respond to that need in the past, it appears that the Legislature is now moving in that direction and the establishment of at least some comprehensive regional planning agencies is imminent. In this article, the authors discuss various approaches to regional planning, problems of enforcement of regional plans, and alternatives available for controlling the regional planning process. The authors conclude dheir analysis by setting forth commendations for basic criteria necessary for effective regional planning legislation in 1973

    The George-Anne

    Get PDF

    Human performance in air traffic control

    Get PDF
    Air Traffic Controllers (ATCOs) are responsible for the safety and efficiency of all air traffic. It is essential that controllers maintain a consistently high standard of human performance in order to maintain flight safety. Knowledge of human factor influences on controller performance is critical to understand and mitigate threats to performance. Previous research has largely focused on the association between single factors and performance, which has resulted in a comprehensive understanding of single factor influences. In current control environments however, the residual threats for incidents often result from the interaction of multiple human factors and the resulting cumulative impact on performance. This thesis describes a set of studies that investigate the relationship between multiple, co-occurring factors, and the association with human performance. Findings contribute further understanding of multifactor combinations and associations with human performance, and provide novel and practical recommendations for the mitigation of multifactor influences on controller performance. A literature review, incident report analysis and survey of air traffic professionals confirmed that a majority of research approaches were fundamentally single-factor in nature, which is out of step with real air traffic management (ATM) contexts. In addition, findings confirmed that multiple factors co-occur in an air traffic control (ATC) environment, and are associated with controller performance. An off-line experiment using students as participants investigated the relationship between a set of human factors and the association with performance. Results indicate that several factors known to be associated with controller performance do co-vary and factors may interact to produce a cumulative Influence on performance. An interview study with en-route controllers contributed to an understanding of mitigation strategies of multifactor influences. The research presented in this thesis has contributed findings that have both theoretical and practical implications. This research has addressed long-standing gaps within human performance literature and contributed new understanding to the complex field of human performance in air traffic control. Findings suggest that factors do co-occur in ATC, and interact to negatively influence performance, pushing controllers to the edge of performance. This research argues for a more ecologically valid investigation of real-world systems using multiple factors rather than the traditional one or two-factor paradigms. In addition, this research investigation has contributed novel understanding of mechanisms which may mitigate multifactor influences and has developed practical recommendations for aviation personnel that may be used to support performance, thereby preventing performance decline, with important implications for maintaining and improving safety within the ATC domain

    Daily Eastern News: November 19, 1991

    Get PDF
    https://thekeep.eiu.edu/den_1991_nov/1011/thumbnail.jp

    Daily Eastern News: November 19, 1991

    Get PDF
    https://thekeep.eiu.edu/den_1991_nov/1011/thumbnail.jp

    Human performance in air traffic control

    Get PDF
    Air Traffic Controllers (ATCOs) are responsible for the safety and efficiency of all air traffic. It is essential that controllers maintain a consistently high standard of human performance in order to maintain flight safety. Knowledge of human factor influences on controller performance is critical to understand and mitigate threats to performance. Previous research has largely focused on the association between single factors and performance, which has resulted in a comprehensive understanding of single factor influences. In current control environments however, the residual threats for incidents often result from the interaction of multiple human factors and the resulting cumulative impact on performance. This thesis describes a set of studies that investigate the relationship between multiple, co-occurring factors, and the association with human performance. Findings contribute further understanding of multifactor combinations and associations with human performance, and provide novel and practical recommendations for the mitigation of multifactor influences on controller performance. A literature review, incident report analysis and survey of air traffic professionals confirmed that a majority of research approaches were fundamentally single-factor in nature, which is out of step with real air traffic management (ATM) contexts. In addition, findings confirmed that multiple factors co-occur in an air traffic control (ATC) environment, and are associated with controller performance. An off-line experiment using students as participants investigated the relationship between a set of human factors and the association with performance. Results indicate that several factors known to be associated with controller performance do co-vary and factors may interact to produce a cumulative Influence on performance. An interview study with en-route controllers contributed to an understanding of mitigation strategies of multifactor influences. The research presented in this thesis has contributed findings that have both theoretical and practical implications. This research has addressed long-standing gaps within human performance literature and contributed new understanding to the complex field of human performance in air traffic control. Findings suggest that factors do co-occur in ATC, and interact to negatively influence performance, pushing controllers to the edge of performance. This research argues for a more ecologically valid investigation of real-world systems using multiple factors rather than the traditional one or two-factor paradigms. In addition, this research investigation has contributed novel understanding of mechanisms which may mitigate multifactor influences and has developed practical recommendations for aviation personnel that may be used to support performance, thereby preventing performance decline, with important implications for maintaining and improving safety within the ATC domain

    Spectator 1973-10-31

    Get PDF

    Spectator 2011-04-27

    Get PDF
    • …
    corecore