61 research outputs found

    Bruhat order, smooth Schubert varieties, and hyperplane arrangements

    Get PDF
    The aim of this article is to link Schubert varieties in the flag manifold with hyperplane arrangements. For a permutation, we construct a certain graphical hyperplane arrangement. We show that the generating function for regions of this arrangement coincides with the Poincare polynomial of the corresponding Schubert variety if and only if the Schubert variety is smooth. We give an explicit combinatorial formula for the Poincare polynomial. Our main technical tools are chordal graphs and perfect elimination orderings.Comment: 14 pages, 2 figure

    Combinatorially interpreting generalized Stirling numbers

    Get PDF
    Let ww be a word in alphabet {x,D}\{x,D\} with mm xx's and nn DD's. Interpreting "xx" as multiplication by xx, and "DD" as differentiation with respect to xx, the identity wf(x)=xm−n∑kSw(k)xkDkf(x)wf(x) = x^{m-n}\sum_k S_w(k) x^k D^k f(x), valid for any smooth function f(x)f(x), defines a sequence (Sw(k))k(S_w(k))_k, the terms of which we refer to as the {\em Stirling numbers (of the second kind)} of ww. The nomenclature comes from the fact that when w=(xD)nw=(xD)^n, we have Sw(k)={nk}S_w(k)={n \brace k}, the ordinary Stirling number of the second kind. Explicit expressions for, and identities satisfied by, the Sw(k)S_w(k) have been obtained by numerous authors, and combinatorial interpretations have been presented. Here we provide a new combinatorial interpretation that retains the spirit of the familiar interpretation of {nk}{n \brace k} as a count of partitions. Specifically, we associate to each ww a quasi-threshold graph GwG_w, and we show that Sw(k)S_w(k) enumerates partitions of the vertex set of GwG_w into classes that do not span an edge of GwG_w. We also discuss some relatives of, and consequences of, our interpretation, including qq-analogs and bijections between families of labelled forests and sets of restricted partitions.Comment: To appear in Eur. J. Combin., doi:10.1016/j.ejc.2014.07.00

    Blow-up algebras, determinantal ideals, and Dedekind-Mertens-like formulas

    Get PDF
    We investigate Rees algebras and special fiber rings obtained by blowing up specialized Ferrers ideals. This class of monomial ideals includes strongly stable monomial ideals generated in degree two and edge ideals of prominent classes of graphs. We identify the equations of these blow-up algebras. They generate determinantal ideals associated to subregions of a generic symmetric matrix, which may have holes. Exhibiting Gr\"obner bases for these ideals and using methods from Gorenstein liaison theory, we show that these determinantal rings are normal Cohen-Macaulay domains that are Koszul, that the initial ideals correspond to vertex decomposable simplicial complexes, and we determine their Hilbert functions and Castelnuovo-Mumford regularities. As a consequence, we find explicit minimal reductions for all Ferrers and many specialized Ferrers ideals, as well as their reduction numbers. These results can be viewed as extensions of the classical Dedekind-Mertens formula for the content of the product of two polynomials.Comment: 36 pages, 9 figures. In the updated version, section 7: "Final remarks and open problems" is new; the introduction was updated accordingly. References update
    • …
    corecore